僩僢僾儁乕僕
悢妛偲棟壢偺懱尡岺朳偲偼
僆儞儔僀儞僀儀儞僩悢妛偲棟壢偺懱尡岺朳2021偺徻嵶
Web婇夋 棟壢曇
Web婇夋 悢妛曇
夁嫀偺僀儀儞僩
偍栤偄崌傢偣
抦傠偆両榓嶼偺悽奅両
榓嶼偭偰?
嶼妟傪夝偙偆
嶼栘丒嶼斦偺巊偄曽
榓嶼僐儔儉
嶼妟偵僠儍儗儞僕乮夝摎曇乯
乕栤戣侾偺栿乕
岡乮抁偄曈乯偑嬨悺丄屢乮挿偄曈乯偑廫擇悺偺岡屢尫乮捈妏嶰妏宍乯偑偁傞丅 偦偺撪晹偵捈宎偑摍偟偄擇偮偺墌傪擖傟傞丅偦偺墌偺捈宎傪栤偆丅
摎. 捈宎亖$\frac{30}{7}$
偙偙偱偼妛惗僗僞僢僼偑峫偊偨5庬椶偺夞摎傪徯夘偟傑偡丅傕偟偝傜偵懠偺曽朄偱夝偄偨曽偑偄偨傜丄偤傂嫵偊偰偔偩偝偄丅
侾偮栚偺夝朄丗嶰妏宍偺斾傪棙梡偡傞
傑偢偼 夝偒傗偡偄傛偆偵栤戣偺嶰妏宍偺捀揰傪偦傟偧傟 $ A,B,C $ 偲偟傑偡丅傑偨墌偺拞怱偼偦傟偧傟 $O_1,O_2$ 偲偍偒傑偡丅
曈 $ A \;B $ 偲 曈 $O_1 \; O_2$ 偼暯峴側偺偱 曈 $O_1 \; O_2$ 傪幬曈偲偡傞嶰妏宍傪恾1-1偺傛偆偵偟傑偡丅
恾1-1
偡傞偲$\triangle{ABC}偲\triangle{O_1 O_2 D}$ 偼憡帡偵側傝傑偡丅偦偺偨傔 \[ AB : AC = O_1 O_2 : O_1 D \] \[ AB : BC = O_1 O_2 : O_2 D \] 偑暘偐傝傑偡丅 墌偺敿宎傪$r$偲偡傞偲 $O_1 O_2 = 2 r$ 偲側傝丄 \[ O_2 D = 2 r \times \frac{12}{15} = \frac{8}{5}r \] \[ O_1 D = 2 r \times \frac{9}{15} = \frac{6}{5}r \] 偲側傝傑偡丅 傛偭偰丄 \[ AD = 9 - \Bigl( \frac{6}{5}r + r \Bigr) = 9 - \frac{11}{5}r \] \[ BG = 12 - \Bigl( \frac{8}{5}r + r \Bigr) = 12 - \frac{13}{5}r \]
恾1-2
偝偰恾1-2偺傛偆偵丄$A$偐傜$O_1$偲$B$偐傜$O_2$偵慄傪堷偒傑偡丅偡傞偲$ 丂丂丂丂\triangle{ AEO_1} $ 偲 $ \triangle{ AFO_1} $ 偵偮偄偰丄幬曈偼摍偟偔$EO_1$偲$FO_2$偼墌偺敿宎偵摍偟偄偐傜$EO_1=FO_2$偑傢偐傝傑偡丅
乭幬曈偲懠偺侾曈偑偦傟偧傟摍偟偄乭偲偄偆捈妏嶰妏宍偺崌摨忦審偐傜丄 $ \triangle{ AEO_1} $ 偲 $ \triangle{ AFO_1} $ 偼崌摨偱偁傝丄 $ \triangle{ BGO_2} $ 偲 $ \triangle{ BHO_2} $ 偼崌摨偲偄偆偙偲偑暘偐傝傑偟偨丅
傛偭偰 \[ AE = AF = 9 - \frac{11}{5}r \\ BH = BG = 12 - \frac{13}{5}r \] 偑惉傝偨偪傑偡丅 \[ FG = O_1 O_2 = 2r \] 側偺偱丄 \begin{align*} AB = & AF + FG + GB \\ = & \Bigl( 9 - \frac{11}{5}r \Bigr) + (2r) + \Bigl( 12 - \frac{13}{5}r \Bigr) \\ = & 21 - \frac{14}{5}r \end{align*} $AB = 15$ 側偺偱 \begin{align*} 21 - \frac{14}{5}r =& 15 \\ \frac{14}{5} r =& 6 \\ r =& \frac{15}{7} \end{align*} 墌偺敿宎偑 $\displaystyle \frac{15}{7}$ 偱偁傞偙偲偑傢偐偭偨偺偱丄 捈宎偼 $\displaystyle \frac{30}{7}$偱偁傞偙偲偑暘偐傝傑偡丅
俀偮栚偺夝朄丗撪愙墌傪傕偆堦偮昤偔
傑偢偼 夝偒傗偡偄傛偆偵栤戣偺嶰妏宍偺捀揰傪偦傟偧傟 $ A,B,C $ 偲偟傑偡丅傑偨墌偺拞怱偼偦傟偧傟 $O_1,O_2$ 偲偍偒傑偡丅
$ \triangle{ ABC} $ 偵撪愙偡傞墌 $O$ 傪昤偒丄偦偺敿宎 $R$ 傪峫偊傑偡丅
恾2-1
撪愙偡傞墌偺敿宎傪媮傔傞岞幃傛傝丄 \[ \frac{1}{2}亊9亊12 = \frac{1}{2}亊(9+12+15)亊R \] 偑惉傝偨偪傑偡丅傛偭偰丄 \[ R = 3 \]
偙偙偱丄$ \triangle{ AQO} $偵偮偄偰峫偊傑偡丅
恾2-2
$\triangle{AEO_1}偲\triangle{A Q O}$ 偼憡帡偵側傝傑偡丅偦偺偨傔 \[ AE : AQ = E O_1 : QO \] 偲側傝傑偡丅傛偭偰丄 \[ AE 亊 QO = AQ 亊 E O_1 \] \[ AE 亊 3 = 6 亊 r \] \[ AE = 2r \] 摨條偵偟偰丄$\triangle{BHO_2}偲\triangle{B P O}$ 偼憡帡偵側傝丄 \[ BH = 3r \]
傑偲傔傞偲丄埲壓偺恾2-3偺傛偆偵側傝傑偡丅
恾2-3
$A$偐傜$O_1$偲$B$偐傜$O_2$偵妏偺擇摍暘慄傪堷偒傑偡丅偡傞偲 "幬曈偲侾偮偺塻妏偑偦傟偧傟摍偟偄"偲偄偆捈妏嶰妏宍偺崌摨忦審偐傜丄 $ \triangle{ AEO_1} $ 偲 $ \triangle{ AFO_1} $ 偼崌摨偱偁傝丄 $ \triangle{ BGO_2} $ 偲 $ \triangle{ BHO_2} $ 偼崌摨偲偄偆偙偲偑暘偐傝傑偡丅傛偭偰 丂\[ AE = AF \] \[ BG = BH \] 偑惉傝偨偪傑偡丅 \[ FG = 2r \] 側偺偱丄 \begin{align*} AB = & AF + FG + GB \\ = & 2r + 2r +3r \\ = & 7r \end{align*} $AB=15$ 側偺偱 \begin{align*} 7r =& 15r \\ r =& \frac{15}{7} \end{align*} 墌偺敿宎偑 $\displaystyle \frac{15}{7}$ 偱偁傞偙偲偑傢偐偭偨偺偱丄 捈宎偼 $\displaystyle \frac{30}{7}$偱偁傞偙偲偑暘偐傝傑偡丅
俁偮栚偺夝朄丗柺愊傪峫偊傞
嶰妏宍$ABC$傪壓偺恾3-1偺傛偆偵傢偗丄偦傟偧傟偺嶰妏宍傗戜宍偺柺愊傪墌偺敿宎$r$傪梡偄偰婰弎偡傞丅
恾3-2
墌偺拞怱$O_1$偐傜曈AC偵悅慄$O_1E$丄曈$AB$偵悅慄$O_1 F$ 傪堷偒傑偡丅傑偨墌偺拞怱$O_2$偐傜曈AB偵悅慄$O_2G$丄曈$AC$偵悅慄$O_1 H$ 傪堷偔丅傑偨丄捀揰$C$偐傜曈$AB$偵悅慄 $CI$傪傂偒傑偡丅偡傞偲丄偙偺$CI$偼$O_1 0_2$偲傕悅捈側慄偱偁傝丄偙偺岎揰傪$J$偲偟傑偡丅 偙偺帪丄墌偺敿宎$r$側偺偱 \[ O_1 E = O_1 F = O_2 F = O_2 H = r\] 偲偄偊傑偡丅 傑偨丄$IJ = r$ 偱偡丅
傑偢 $\triangle{ABC} \mbox{偺柺愊} $ 傪媮傔傑偡丅 \begin{align*} \triangle{ABC} \mbox{偺柺愊} =& AC \times BC \times \frac{1}{2} \\ =& 9 \times 12 \times \frac{1}{2} \\ = & 54 \end{align*}
$\triangle{ ACO_1}$偺柺愊傪媮傔傑偡丅 \begin{align*} \triangle{ ACO_1}\mbox{偺柺愊} =& (AC \mbox{偺挿偝}) \times (O_1 E \mbox{偺挿偝}) \times \frac{1}{2} \\ =& 9 \times r \times \frac{1}{2} \\ =& \frac{9}{2}r \end{align*} $\triangle{ BCO_2}$偺柺愊傪媮傔傑偡丅 \begin{align*} \triangle{BCO_2}\mbox{偺柺愊} =& (BC \mbox{偺挿偝}) \times (O_1 H\mbox{偺挿偝}) \times \frac{1}{2} \\ =& 12 \times r \times \frac{1}{2} \\ =& 6r \end{align*} 戜宍$A O_1 O_2 B $偺柺愊傪媮傔傑偡丅 \begin{align*} \mbox{戜宍} A O_1 O_2 B \mbox{偺柺愊} =& (O_1 O_2 \mbox{偺挿偝} + AB \mbox{偺挿偝}) \times (O_1 F\mbox{偺挿偝}) \times \frac{1}{2} \\ =& (2r + 15) \times r \times \frac{1}{2} \\ =& r^2 + \frac{15}{2}r \end{align*} $\triangle{ C O_1 O_2}$偺柺愊傪媮傔傑偡丅 \begin{align*} \triangle{ C O_1 O_2}偺柺愊 =& (O_1 O_2 \mbox{偺挿偝}) \times (C J \mbox{偺挿偝}) \times \frac{1}{2} \end{align*} $CJ \mbox{偺挿偝} = CI - JI \;$偐偮$ \; IJ = r \;$側偺偱丄$CI$偺挿偝傪媮傔傞丅 $CI$偼$AB$傪掙曈偲偟偨偲偒偺崅偝側偺偱丄$\triangle{ABC}$偺柺愊偼 \begin{align*} AB \times CI \times \frac{1}{2} = \triangle{ABC} \mbox{偺柺愊} \end{align*} 偲偄偆傆偆偵傕媮傔傜傟傑偡丅 偙偺幃偵 $AB=15, \triangle{ABC} \mbox{偺柺愊} = 54$傪戙擖偟傑偡丅 \begin{align*} 15 \times CI \times \frac{1}{2} =& 54 \\ CI =& 2 \times 54 \div 15 \\ = & \frac{36}{5} \end{align*} 埲忋偺偙偲偐傜丄$CI$偺挿偝偑媮傑傝傑偟偨丅 $ \displaystyle CJ = CI - JI = \frac{36}{5} - r $ 側偺偱丄 \begin{align*} \triangle{ C O_1 O_2}偺柺愊 =& (O_1 O_2 \mbox{偺挿偝}) \times (C J \mbox{偺挿偝}) \times \frac{1}{2} \\ =& 2r \times \Bigl( \frac{36}{5} - r \Bigr) \times \frac{1}{2} \\ =& \frac{36}{5} r - r^2 \end{align*}
\begin{align*} \triangle{ ACO_1}\mbox{偺柺愊} + \triangle{BCO_2}\mbox{偺柺愊} + \mbox{戜宍} A O_1 O_2 B \mbox{偺柺愊} + \triangle{ C O_1 O_2}偺&柺愊 \\ =& \triangle{ABC} \mbox{偺柺愊} \end{align*} \begin{gather*} \frac{9}{2}r + 6r + \Bigl( r^2 + \frac{15}{2}r \Bigr) + \Bigl( \frac{36}{5} r - r^2 \Bigr) = 54 \\ \frac{126}{5} r = 54 \\ r = \frac{15}{7} \end{gather*} 墌偺敿宎偑 $\displaystyle \frac{15}{7}$ 偱偁傞偙偲偑傢偐偭偨偺偱丄 捈宎偼 $\displaystyle \frac{30}{7}$偱偁傞偙偲偑暘偐傝傑偡丅
係偮栚偺夝朄丗妏偺擇摍暘慄傪峫偊傞
恾4-1
傑偢丄墌偺敿宎傪乭r乭偲偟傑偡丅恾4-1偺傛偆偵丄 妏A丒妏B偺擇摍暘慄偲墌偺拞怱偐傜偺悅慄傪堷偒傑偡丅(妏偺擇摍暘慄偼墌偺拞怱傪捠傝傑偡丅)
師偵丄擇摍暘慄偺惈幙傛傝斾傪峫偊傑偡丅 \begin{align*} CP:PB=AC:AB=9:15=3:5\\ \end{align*} 偮傑傝丄 \begin{align*} CB:CP=8:3\\ 8亊CP=3亊CB\\ CP=\frac{3亊12}{8}=\frac{36}{8}=\frac{9}{2}\\ \end{align*}
偮偓偵丄$\triangle{ACP}$傪庢傝弌偟偰傒傑偡丅
恾4-2
\begin{align*} AD:AC=DO_1:CP\\ AD:9=r:\frac{9}{2}\\ AD亊\frac{9}{2}=9r\\ AD=9r亊\frac{2}{9}=2r\\ \end{align*}
摨條偵偟偰丄 \begin{align*} AQ:QC=15:12=5:4\\ CQ=9亊\frac{4}{9}=4\\ BC:BG=CQ:O_2G\\ BG=3r\\ \end{align*}
崱媮傔偨偙偲傪傑偲傔傞偲偙偺傛偆偵側傝傑偡丅
恾4-3
"幬曈偲侾偮偺塻妏偑偦傟偧傟摍偟偄"偲偄偆捈妏嶰妏宍偺崌摨忦審偐傜丄 $ \triangle{ ADO_1} $ 偲 $ \triangle{ AEO_1} $ 偼崌摨偱偁傝丄 $ \triangle{ BFO_2} $ 偲 $ \triangle{ BGO_2} $ 偼崌摨偲偄偆偙偲偑暘偐傝傑偡丅傛偭偰 丂\[ AD = AE \] \[ BF = BG \] 偑惉傝偨偪傑偡丅 \[ EF = 2r \] 側偺偱丄 \begin{align*} AB = & AE + EF + FB \\ = & 2r + 2r +3r \\ = & 7r \end{align*} $AB=15$ 側偺偱 \begin{align*} 7r =& 15r \\ r =& \frac{15}{7} \end{align*}
墌偺敿宎偑 $\displaystyle \frac{15}{7}$ 偱偁傞偙偲偑傢偐偭偨偺偱丄 捈宎偼 $\displaystyle \frac{30}{7}$偱偁傞偙偲偑暘偐傝傑偡丅
5偮栚偺夝朄丗 嶰妏娭悢傪棙梡偡傞
恾5-1
嶰妏娭悢偺惈幙傛傝 \begin{align*} \cos A =\frac{9}{15}\\ \end{align*} 敿妏偺岞幃傛傝 \begin{align*} \tan^{2} \frac{A}{2}=&\frac{1-\cos A}{1+\cos A}\\ =&\frac{15-9}{15+9}\\ =&\frac{6}{24}=\frac{1}{4}\\ =&\tan \frac{A}{2}=\frac{1}{2}\\ =&\frac{DO_1}{AD}\\ \end{align*} 備偊偵丄 \begin{align*} AD=2r \end{align*} 摨條偵偟偰丄 \begin{align*} BG=3r\\ \end{align*}
恾5-2
"幬曈偲侾偮偺塻妏偑偦傟偧傟摍偟偄"偲偄偆捈妏嶰妏宍偺崌摨忦審偐傜丄 $ \triangle{ ADO_1} $ 偲 $ \triangle{ AEO_1} $ 偼崌摨偱偁傝丄 $ \triangle{ BFO_2} $ 偲 $ \triangle{ BGO_2} $ 偼崌摨偲偄偆偙偲偑暘偐傝傑偡丅傛偭偰 丂\[ AD = AE \] \[ BF = BG \] 偑惉傝偨偪傑偡丅 \[ EF = 2r \] 側偺偱丄 \begin{align*} AB = & AE + EF + FB \\ = & 2r + 2r +3r \\ = & 7r \end{align*} $AB=15$ 側偺偱 \begin{align*} 7r =& 15r \\ r =& \frac{15}{7} \end{align*}
墌偺敿宎偑 $\displaystyle \frac{15}{7}$ 偱偁傞偙偲偑傢偐偭偨偺偱丄 捈宎偼 $\displaystyle \frac{30}{7}$偱偁傞偙偲偑暘偐傝傑偡丅