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1. Moduli spaces of stable A-parabolic connectios

1.1. Settings.
e (: a nonsingular projective curve of genus g > 0
ot = {t1,...,tn}, a set of n-distinct points on C.

n
D(t)=) t;=t +-+ln
i=1

o Mypn ={(C,t) asabove}/ ~:  The moduli of (ordered) n-
pointed curves of genus g.



1.2. A-connections. Fix A € C.

Definition 1.1. (F,V) is called a A-connection if

e [/ : An algebraic vector bundle on C' of rank r and of degree d.
oV . F — FE® Qé(D(t)): A logarithmic A-connection. a €
Oc,0 € b

V(ao) = o @ da + aV (o) | A-twisted Leibniz rule

We denote by

L =Q4(D(t))

the line bundle or the invertible sheaf of meromorphic 1 form on C
having poles on D(t) = t1 4+ t9 + --- + 1, at most order 1. Later
we may allow the higher order pole D(t) = mqt] + moto + - - - mpty,
with m; > 1. |deg L =29 — 2+ n. We assume that n > 1 by a
technical reason.




e \ # (: linear connection:
(E,V): A-connection = (E,%V) . a usual connection
Locally near at z = t;, taking a local frame of E near z = {¢;,
B~ 0F) 5 (ay()_p, A)sEr € Mr(Ocy,) @ OL(D(t)

V{(ay(2))) = Mday(2)) + A()(ag(2)—=

z —t;
e \ = 0: Higgs bundle: Denote V = J.
(E,®): 0-connection = (F,®) :a Higgs bundle, ®:Higgs field

Twisted Leibniz rule leads: for a local section a € Op,0 € E

$(ac) = aP(o) |an Oc-linear hom.
® € End(E)®L. Locally near z = t;, B(2)=%- My (O¢t.)®

z—t;




1.3. Residues and Local exponets.

o (E,V), (E,®) as above.

o res;; (V) = A(¢;), resy;(®) = B(t;) € End(E),): residue homo-
morphisms. A(t;) = (ag)1<k,i<r B(ti) = (bg1)1<k,i<r: com-
plex r X r matrices.

o We put an order of eigenvalues of res; (V) and res; (®) respec-
tively, and denote them as

{Véﬂjyii) o) \

) )

local exponents of V at t,.

e \We denote the local exponents of V and ® by
V<i>)1§z'§n

V=V )o<j<r-1



1.4. Fuchs relation.

Lemma 1.1. For a A-connection (E,V) ( resp. a Higgs bundle
(K, ®)), with singularity at D(t) as above, we have the following

relation.

r

L

—

n
)
=1

[/

]:

-

n

)= ~Adeg B = —Ad

r—1

N

resp. y:( V;-i)) = ()

1=1

J

|
-

1.5. The space of local exponents of A\-connections.

/

()= v = <y]<.

\

1<i<n
0<j<r-—

Ny g =Ny (0)

LECT X+ Y Y

1<i<n 0<<r—1

Higgs bundle case

(1) _
J = (

/



1.6. Genericity for local exponents.
Definition 1.2. Let v = {u]@ (Ejgg_l € N;?A(d>-
(1) v is called resonant, if for some i and j; # jo, V§-? — VJ<-;> SPVA

(2) v is called reducible if there exists a subset v/ = {ij>} of v such

that for each 7,1 < ¢ < n, the number of Vﬁf) c v is a fixed

number k, 1 <k <r—1land)_ V@ € A\Z where the last sum
J

is taken over /. If v is not reducible, v is called irreducible
(3) If v is neither resonant, nor reducible, we call v is generic.

Remark 1.1.If a A\-connection (£, V) has a subconnection (F/, V‘F)

is with 0 < rank F' < rank F, the local exponents of (E,V) is re-
ducible.



1.7. Parabolic connections.

Definition 1 3. Fix (C,t) € My, and v € N*(d)

o (£, V, {l }1<Z<n)' a v-parabolic connection of rank r and de-
gree d on C

<
o (£/,V): a logarithmic connection of rank r and degree d

V;E—>E®95(D( )

ol B, =1 51" 5 51 517 = 0: a filtration of
Em for each 1,1 <4 < n such that

(1) dim( /Z +1) =1 and

(2) (resti(V) — V§Z))(l< >) C 15421 forj=0,1,--- ,r—1.



1.8. Parabolic stability. Next, we d'efine a-stability condition on the
v-parabolic connections (F, V, {Z@}lgign).

e Fix a sequence of rational numbers a = (ay))E;EZ such that
(1) O<Oz§i)<ozgi><---<oz7(j)<1

. ,
fori=1,...,n and 045-7’) + ozy,) for (1,75) # (i, 5').

o (F,V, {lg)}lgign): a v-parabolic connection.
o0 FCE V) C F@Qé(D(t)). Define integers 1ength(F)§.Z>
by

(2) length(F)\ = dim(Fly, 1) /(Fly, 0 i),
Note that lemgth(E)gi> = dim(l;zzl/l;@) =1for1<j5<r



Definition 1.4. e A v-parabolic connection (E,V, {lii)}lgign):
is a-stable
<

0C FSE,V(F)CF®QLD(t)),

deg '+ 001 > ay) length(F)gi) deg B+ i1 > i Oéﬁ'i) 1ength(E)§~i)
rank F’ < rank F/

We can define the notion of: |

e a v-parabolic Higgs bundle (B, , {1}, 2;2,,) and

e the ax-stability conditions for a v-parabolic Higgs bundle as in the
same way above.



1.9. Moduli spaces of stable parabolic connections and stable para-
bolic Higgs bundles.

e Fix (C;t) and v € N'(d). We can define the moduli space
of ax-stable parabolic connections

(3 % oo, (B, V, (L h<izn)} =

e Moreover for v € fH we can define the moduli space of a-

stable parabolic Higgs bundles:

W) MGy dy = {(E0 (I hawm)} ~



1.10. Existence of algebraic moduli space of a-stable v/-parabolic con-
nections.

Theorem 1.1. (Inaba-lwasaki-Saito RIMS2006 [6], ASPM2006 [7],
Inaba, JAG2013 [5]). There exists the relative fine moduli scheme

T : M(Cé,f:)/Mg,anﬁ(d)(r’ d,n) — My x NjM(d)

such that 7 is smooth and quasi-projective.

Corollary 1.1. For fixed (C,t) and v € N/} (d), the moduli space

(81

(C,t)('/’ r,n,d)
is a smooth quasi-projective algebraic scheme (most case irreducible)
of dimension

2%(g — 1) +nr(r —1) +2 = 2N.
Moreover ./\/l<c“(J t>(1/, r,n,d) admits the natural algebraic symplectic
structure. |



1.11. As in the similar way, we can obtain the existence of algebraic
moduli space of a-stable v-parabolic Higgs bundles (K (D)-pairs of
Boden and Yokogawa).

Theorem 1.2. There exists the relative fine moduli scheme

, o ~ n,H
. M(C,E)/Mg)nx.N;ﬂ(Cl)(T’ d, n>H — Mg’n X Nr

such that 7 is smooth and quasi-projective.

Corollary 1.2. For fixed (C,t) and v € N';;, the moduli space

Elat)(l/, r,n,d)g
is a smooth quasi-projective algebraic scheme (most case variety) of
dimension
2%(g — 1) +nr(r — 1) +2 = 2N.
Moreover M?Cyt)(u’ r,n, d) gy admits the natural algebraic symplec-
tic structure.



1.12. Example: Moduli space of connections, Painlevé VI case. Con-
sider the case: C' = P!, r =2, n =4,d = —1 and a generic v € N;}(—1). We can
normalize t = {t1,%o,13,t4} = {0,1,¢,00} and v = {£11, t1y, Fr3.04, 1 — 14}
Then the moduli space M(t,v) = ?P17t>(1/,2,4, —1) is an algebraic surface.
dim M (t,v) = 2N = 40 —-1)+4 x2+2 = 2. M(t,v) has a nice com-
pactification Sy, = M(t,v). Si, is a 8-points blowing up of ¥y = P(Op1 &
Op1(—2)). The points of blowing up depends on the local exponents v. See be-
low. The anti-canonical divisor of Sy, is given — K, , = 2Yy+ Y1 + Yo + Y3+ Y.

M(t,v) = Se \ Y|

Y] Y, Y3 Yy oo-section
l 2 _
vy Yo=-2
\“‘ \“‘ \“‘ \“ 1/4
IO S A § M(t,v) = S, \ Y
St>V RS RS S . ’
" "’
] ) 9 |1 — vy
T
p! : : : :

t1:0t2:1t3:t ty = 00



1.13. Example: Moduli space of parabolic Higgs bundles. Consider
the case: C = PL,r = 2,n = 4,d = —1 and a generic v/ € N.;(0). We can
normalize t = {t1, %o, 13,4} = {0,1,¢,00} and V' = {41, £15, +v3.+14}. Then
M, vy = ?Pl’t)(l/, 2,4, —1)py is also an algebraic surface. dim My(t,v') =
2N =40 —1)+4 x 242 = 2. My(t,v') has a nice compactification Sy, =
M(t, V). Stu is a 8-points blowing up of ¥y = P(Op1 ® Opi(-2)). —Kg, , =
2Yo + Y1+ Yo+ Yo + Yy (M(t,v )y = Si \ Y| We can see that algebraic
structures of M (t,v) and M(t,v')y are different.

Y] Y, Y3 Y,y oo-section
l 2 _
vy Yo=-2

\“‘ \“‘ \“‘ \“ V4 ,
Siu b4 b Y| M= s Y
¢ 1) 9 s
T
P! 5

t1=0t,=1 t3=t ty = 00



2. The Riemann-Hilbert correspondence

2.1. Moduli space of representations of 71(C'\ D(t), x). Define:

RP ey = Hom(m (C\ D(t),*), GL.(C))//Ad(GL,(C))
or

RPZ’CSY’t) = Hom(m(C'\ D(t),%),SL,.(C))//Ad(SL,(C))
By definition, RP?{C,t) and RPZ’&) are affine varieties associated to the invariant
ring of matrices.

Replacing T' = /\/l’g,n by a certain finite étale covering u : 7" — T and varying

(C)t),v) e T x /\/<n)( d) we can define a morphism

(5) RH ./\/l C t /T’(T n d) — RPTL T/
which makes the diagram
o RH
M (Ct /T’(T’ , d> — an T’

(6) @,mdl M;

T x NY(d) 220 17 AT

commute.



2.2. Riemann-Hilbert correspondences.

Theorem 2.1. (Inaba-Iwasaki-Saito, RIMS2006 [6], ASPM2006[7], Inaba JAG2013|5]
). Assume that o is generic. The Riemann-Hilbert correspondence

(7) RH : M) pn(r,n,d) — RP) 30 % o N

IS a proper surjective b/meromorphlc analytic morphism. In particular, for each
(C)t),v) e T" x ./\/}(n)(d), the restricted morphism

(8) RH((ct)w) : M{cty(mn,d) — RPc4)a

gives an analytic resolution of singularities of RP?C t).a Where a = rh(v) is a image
of small Riemann-Hilbert correspondence rh.



3. GENERAL SCHEMES OF THE GEOMETRY OF RIEMANN-HILBERT
CORRESPNDENCES

Consider the following diagram:

M2 R
| I3
(Ixp) 5

Tx N —% T x A.

Theorem 3.1. If the Riemann-Hilbert map
RHt’V : Mt”/ — Rt’ﬂ(y)
is a proper, surjective bimeromorphic holomorphic map forany (¢,v) €

T x N. Then the corresponding isomonodromic differential equations satisifies the
geometric Painlevé property.



Isomonodromic Flows: v Generic Case

The Riemann-Hilbert correspondence RH,, induce an analytic isomorphisms for
all t € Tn. Pulling back the constant section on the right hand side, we have the
isomonodromic flows on the left hand side. These isomondromic flows satisfy the
Geometric Painlevé property.

constant flows = monodromy is constant
Isomonodromic flows = Painlevé or Garnier flows

\ ’ \ REL \j \
—s |~ — R(Put)a
;\/ - R(,]un,to)a

Mg(to,%\K M (t,v, L) \ \

ty  Thx {v)y - to T, x{al t

Isomonodromic Flows and Painlevé or Garnier Flows

Fricure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic v



Isomonodromic Flows: Special Case

If v is special (resonant, reducible), the right hand side have singularity. On the other hand, the left hand side
is always nonsingular, hence RH,, gives a simultaneous resolution of singularities. Riccati flows.

Riccati flows are tangent to family of (—2)-curves Ay singularity of R(Pug,)a-
Isomonodromic flows = Painlevé flows constant flows = monodromy is constant
/_\__/ - . R<P4,t)a

contraction

] I

R(P4,t() a
Mg (to, v, ’\\)i’ Mf(t,u,L)Q A

/ to  Tix{v)t - to Tix{a) t

(—2)-rational curve

RH,, contracts (—2)-rational curves onto singular points of type A;.

Case of Painlevé VI

reure 2. RIemMann-Hilbert correspondence and isomonodromic
flows for special v



3.1. Geometric Painlevé property of the NDFE arrising from Isomon-
odromic deformation of LODE.

Corollary 3.1.([6], [7], [5]) Differential equations arrising from
iIsomonodromic deformations of linear connections with regular singu-
larities over a curve satisfies the geometric Painlevé property.

Remark 3.1. We can extend the above result in the following cases;

e Connections of any rank with generic unramified irregular singu-
larity on smooth projective curves. (Inaba-Saito, Kyoto JM2012
[9])

e Logarithmic connections of any rank with fixed spectral type with
multiplicities. (Inaba-Saito, Math. Soc. Japan 2018).

e Generic ramified irregular singular case (Inaba. in preparation).



3.2. Moduli spaces of monodromy representations and generalized
Stokes data related to Painlevé equations. Monodromy variety for
Painlevé VI case

Define

RP>* = Hom(m (P \ {t1,ta,t3,ts}, SL(2,C))//Ad(SLy(C))
= {(Ml, MQ, Mg, M4> - SLQ(C), M1M2M3M4 = ]2}//Ad<SL2<C>)
= {(M1, My, M3) € SLy(C)}//Ad(SLy(C))

We can describe the moduli space as follows.
Take M; € SLy(C) for i =1,2,3 and set

a; = Tr[M;],i = 1,2,3  ay := Tr[My] = Tr[M, '] = Tr[M; M, Ms;]
For a circle permutation (i, 7, k) of (1,2,3), set
x; = Tr[M; My].
Then the invariant ring is given by
C[M;, My, M3)°*C) = Clzy, 29, 23, a1, a2, as, as] /(f(x, a))
where we set the cubic polynomial given by Fricke-Klein, Jimbo and lwasaki.

f(x,a) = 212903 + 2] + 25 + 25 — 01(a)x; — Oy(a)Ty — O5(a)xs + O4(a)



0;(a) = ajas +ajag, (7,7, k) = a cyclic permutation of (1,2, 3),

0i(a) = aiasasay + at + a5+ a3 +aj — 4.

Theorem 3.2. The monodromy variety of Painlevé VI is isomorphic to the
affine variety

X =RP}® = SLy(C)?//Ad(SLy(C))

— SpeC(C[I’l, L2, L3, a1.02, A3, a4]/(f<X, a))
= {(x,a) € C", f(x,a) =0} c C’

Moreover for a fized a = (a1, a, a3, ay) € C*

X, = RPZ:Z — Spec(Clzy, z2, 23] /(f(x,a))) = &, € C° C P?.
The Riemann-Hilbert correspondence induces an analytic isomorphism for generic
v=(tr,i=1,2,3vy1 —1vy). a; = 2cos(—27y;).
RH,, : M(t,v) — X,

For special v, we have a proper bimeromorphic analytic morphism (analytic reso-
lution of singularities).

RH,, : M(t,v)—X,



X = Ua€A4Xa
Aj-singularity

/LT /]




4. TYPES OF SINGULARITIES OF LINEAR CONNETIONS

Let us list up the types of irregular singular points of lin. connetions of rank
2 on P! which induces iso-Stokes-Monodromy differential equations (=Lax equa-
tions)isomorphic to the Painlevé equations of the types in the table. This re-
sults follows from original result due to Garnier, Okamoto, Miwa-Jimbo-Ueno and
Ohyama, Kawamuko, Sakai and Okamoto. (Moreover Flaschka and Newell obtained

PII(FN).)

Dynkin | Painlevé equation | s(0) | s(1) | s(c0) | s(t) | no. of parameters
Dy PVI 0| 0 0 0 4
Ds PV 0| 0 1 - 3
Ds |degPV=PHI(D6)| 0 | 0 | 1/2 | - 2
Dg PI11(D6) 1 - 1 - 2
Ds PIII(D7) 12 - [ 1 | - 1
Dy PI11(D8) 12 - | 1/2] - 0
E PIV 0o - | 2 |- 2
B PII(FN)=PII 0| - [3/2] - 1
E; Pl - - 3 - 1
FE3 P - - | 5/2 | - 0

TABLE 1. The type of singularities for linear problems and Pailevé equations



Equations of Moduli space of Stokes-Monodromy data

The following result is due to a joint work with Marius van der Put

([21]).

(1) PVl 22023 + 22 + 23 + 23 — 01(a)x; — Oa(a)xy — O3(a)zs + Oi(a) = 0,
0;(a) = a;as + ajag, (i,7,k) = a cyclic permutation of (1,2, 3),
04(a) = ajazazay + a3 + a3 + a3 + aj — 4. with a1, as, az, ay € C.

(2) PV zym9m3 + 23 + 23 — (51 + S953)71 — (89 + 8183)T2 — S323 + 83 + 518983 + 1 = 0
with s1,s50 € C, s3 € C*.

(3) deg PV T1Xox3 — QZ% — 33% + SpX1 + S1T9 — 1 =0.
with sg, 51 € C.

(4) PIN(D6)  x1x973 4+ 2% + 25 + (1 + af)zy + (a0 + Bz + aff = 0
with o, 5 € C*.

(5) PIN(D7)  ayz9x3+ 21 + 25+ axy + 29 =0
with o € C*.

(6) PIII(D8)  xyz9x3 + 25 — 25 — 1 = 0. wrong.

(7) PIV  zymows + 2% — (85 + s189)x1 — S50 — S33 + S5 + 5155
with 51 € C, sy € C*.

(8) PI(FN)  zywox3 4+ 21 — 29 + 23 + 51 = 0, with s; € C.

(9) Pl zywows + o1 + 22+ axs + a+ 1 =0 with a € C*.

(10) PI=PI(E}) 212923 + 21 + 25+ 1 = 0.



4.1. Correction of PIlI(D8) and P = W conjecture.
PIII(D8) S):zizew3+ 2] — 23 — 1 =0. wrong.
Simple mistake:
PIII(D8) Sy:zyzemw3+ a3+ 23 —1=0.
More seriously, one should mode out by Sy by the involution ¢ induced by

o (x1, 10, x3) — (—x1, —T2.73)
Then one has the following equation for S3 = S,/ < o >:

S3 1wz +ys +yi —y1 =0

Ss has a compactication S3 C P? as a singular cubic surface with A, singularity at the boundary
S3\ S3 and one can see easily the weight filtration of H?(S5, Q) coming from H?(S3, Q) is 0 where
Ss is the minimal resolution of S;. This corresponds to the fact that the corresponding pervese
Leray sequence of Hitchin fibration m : Mp, — C has no contribution from H!(C, R'7,Q).

This is a special case of P = W conjecture which was proved by S. Szabo (arXiv:1802.03798).
Actually, he checked the conjecture for all the cases of 10 types.



5. Apparent singularities (a joint work with S. Szabo)

5.1. Apparent singularities of connections and Higgs bundles.
e ('t as before.
o We set [ = Qlc(tl + .-+ +tp). We assume that n > 1 and
deg L =29 —2+n > 0.
Consider the moduli spaces

9) Mpr(v) = MG (v, r,n, d={(E, V(L heizn)} =
(10) |
My (v) = MG v, r,m d) g = {(B, @ {1} <icn)}) =

For simplicity, we assume that v € N/'(d) or v € N';; are non-

resonant and so generic such that all members of moduli spaces are
irreducible.



Proposition 5.1. Assume that 30 € H)(C, E)\ {0} and deg L =
2g —2+4+mn >1and deg D =n > 1. Moreover assume that (£, V)
(resp. (E,®) ) is irreducible. Set

11 F =" l7l=0coL e oL Y
C

3 a natural embedding F' < E such that H)(C,F) ~ Co C
HY(C, E). Define the torsion sheaf T'4 by the exact sequence

(12) 0 —F —F—T4—0,

Then

r(r — 1).

lengthTa=d—r(g—1)+71°(g—1)+n 5



Definition 5.1. For an irreducible parabolic connection (F,V,1)
(resp. irreducible parabolic Higgs bundles (E, ®,1) ) and a non-zero
section o, we call the support of T’y apparent singular points of the

parabolic connection (E, V., [) (resp. (E, ®,1)) with the cyclic vector
0.



Now assume that deg £ = d = r(g—1)+1. We have dim H'(C, E) =
dim H'(C, E)+1 by Riemann-Roch. If moreover H'(C, E) = 0, we
have a non-zero section o € H'(C, E) ~ Co unique up to non-zero
scalar multiplications.

Theorem 5.1. Under the same notation and assumption as before,
let us assume that

(13) d=degFE =r(g—1)+1,

(14) HY(C,E) = 0.

Then we have a natural unique embedding F' — E which yields
(15) 00— F —F—Ty—0.

Then the sheaf T4 is a torsion sheaf of length
r(r—1)

+ 1.
2

(16) N=r’(g—1)+n



5.2. The case of parabolic Higgs bundles.
olet (F,d,l) be the v-parabolic Higgs bundles of degree d =

deg E = r(g—1)+1 and assume that dim H(C, E) = 1. Again
we set [ = Q}J(D)
e \We have a canonical exact sequence
0O —F —F—T1T—70
with F' = @gzlL_(j_l) and with apparent singularities
suppT” = {q1,- -, qn’}
where

N = 7“2(9 — 1) +n7a(r — 1)

2

1



5.2.1. Spectral curves. Let
p:P=POc® L) —C
be the P!-bundle over C' which is a relative compactification of the total space of

L — C. The canonical section z € H(P,Op(1) ® p*(L)) can be used to define
the spectral curve

Cs - det(zl, — D) —x —sr Tl s —5, =0CLCP
with the natural map 7 : C;, — C' and s; € H'(C, L").
P C_
|Y D P\C_~L
p A
x C.
\\/
o — e,
C
tl t2 tn

FIGURE 3. The ruled surface and the curve



Proposition 5.2. [BNR, [3]]. Assume that C; is a smooth and irreducible Then
there exists one to one correspondence

(E,9,]) < (7r: Cy — C,§)

where £ is a line bundle on C';. The correspondence <=is given by 7.6 = E and
the structure of m,O¢ -algebra.

Since H'(C,, &) = H(C, E) = C, we see that a unique nonzero effective diviosr
0 of degree

— 1
degfzdegE—degF:r(g—1)+1+(2g—2+n)r(r2 >:N.

We have the natural exact sequence

0—O¢, —€6—T —0
0 — m0Oc, — m& — 1T — 0
and m,0O¢, ~ F, m,£ = E and T =T.
0O —F —LF—1—0

5.3. Higgs case. For (E, ®,[), take the data of spectral curve and the line bundle
(m: Cs — C€).



Since HY(C, /) a nonzero section o, there exist a non-zero section 6 € HY(C,, £)

such that 7,(6) = 0. Let § = p1+ - - - + py be the zero divisor of 6. We have the
exact sequence of sheaves on C

0 — O¢, 7, Oc.(0) — Ts — 0
The pushforward of this sequence
0 — .0, — & — T 15 — 0

is isomorphic to
0 —F —F—T—70

So we have
N N
m(0) = Zﬂ(pz') = Zq@'-
1=1 i=1
0O —— F — FEF — T — 0
1o 1o 1 D,

0 — FQL — EFE®L — T®L — 0
The dual coordinates {p1,---pn}.

pi=®(q;) € L,



5.4. Geometric aspects of Higgs cases. Let us set
My(w)! = {(E,®,1),degE =r(¢g—1)+1,H(C,E) ~ C}.

Then we have the following

M) =~ M= {(C,, &)} - HibY(L)
3 3 3
Hilb™ (C) [eA Hilb™ (C)

apparent map Hitchin fibration

d((Cs, &) = Is - Ideal sheaf of § C Cs C L

In many known cases, we can check that
¢ is a dominant birational morphism,

and we expect that this statement is always true.



6. Moduli Spaces of Parabolic Bundles
For simplicity, we will consider only the full flag case.

e P! . the moduli stack of quasiparabolic bundles (£, 1) = (£, {lgf)}lgign)
of rank r and degree d over (C t).
Definition 6.1. (1) (E,1) is simple if H(C, F") = C.
(2) (E, 1) is decomposable if there exit quasiparabolic bundles (F7, (1)
and (Fb,1l9) such that (E,l) ~ (F,11) & (Fb,l9) (after renum-
bering of filtrations).
(3) (E, 1) is indecomposable if it is not decomposable.

Let us also denote by M?‘C t>(l/, r,d) the moduli stack of a-stable

connection (F, V. [) with the given invariants.



7. The image of v-parabolic connections

For simplicity, we propose the following:

Assumption 7.1. The local exponents v is generic so that all

(E,V,1) is irreducible.

Then we have the morphism from the stack to the coarse moduli
space of a-stable connections

?O,t)(u’ r,d) — M?C’ﬂ(V, r,d).
Moreover, we have a natural forgetful morphism of stacks

T M d) — Py, (B, V1) = (B,1).

Question 7.1. Determine the image Pg’ﬂa’t of 7
Flat
(MG g (v,r,d) = Pyl c Py



Theorem 7.1.If (F,1) is simple, (E,[) € p;“,flat

Let PZ;’S the moduli stack of simple quasiparbolic bundles. We ob-
tain an open embedding

r,s r, flat
P CP

For C = P! and r = 2,d = 0, Arinkin and Lysenko showed that

Theorem 7.2.For C = P! (E,l) € 773, the following are equiva-
lent.

(1) (E,1) is simple.

(2) (E, 1) is undecomposable.

(3) (E,1) is flat, that is, (E,1) € P

So in the case of C' = P! with (t1,- - ,tn),n >4

2,s  2ud 2, flat
73O — 70 — 70



Moreover let us assum that the coarse moduli space of Pg’ﬂa’t exists,
and we obtain the natural morphism

r, flat r, flat

which has a GG,,,-torsor structure.

fi

In good case, Pg’ at becomes a sheme, but it may be nonseparated
schme.

We have the following commutative diagram.

[
M (w,rd)) — Py

- ¥

Flat
T M?‘C’t)(u,r, d)o — nga



7.1. The coarse moduli for C = P!, n = 4 Painlevé VI case. Take
C =Plr=2n=4,d=—1and a generic v € NjJ(—1). We can normalize
t = {tl,tg,tg,t4} = {0,1,t,00} and v = {Fvy, *1n, t13.04,1 — v4}. Then
M(t,v) = (Pl )( 2,4,—1) is an algebraic surface.
We have isomorphisms
P21flat PQf _ PE’IUd _p
and a natural morphism

M = MG (v, 2,4,~1) — P

Theorem 7.3. The moduli space of quasiparbolic bundles P is a nonseparated
scheme obtained by two copies of P! identifying at P!\ {¢;,--- ,t4}. There are
two points t;-t € P for each .



72. C =P'and t = (t,--- ,t5). Consider the case of C = P! with 5 singular

points and » = 2,d = —1. Frank Loray an | described P = PE’lﬂat as follows.

Theorem 7.4. A
P=vuvuWViuWul;uV,uUV;

Here V' =~ P? and there is a natural embedding of P! — A C P?, whose image

is a conic A. Blowing up the image of five points ¢1, - -+ ,t5 € A C P?, we obtain
the A

V —V ~P2
Then we have 16-(-1) curves on V' and we have 5 blowing downs

V—V,~ P2

besides original blowing up. Patching these projective surfaces by these biratinal
map, one can obtain the moduli space P.



8. A RESULT OF ARINKN AND LYSENKO

Incase of C =Pl t = (t1,--- ,14), 7 =2,d = 0.

o (F,V,p,l) such that (E,V,I) € M?‘Pl,t)(l/,Z,Zl, 0) with an isomorphism
Q : NE — Op1.

e M: the moduli stack of (E,V, ;1)

e P is the moduli space of undcomposable rank 2-bundles.

oj U =P\ {t,,---,ty} — P. Consider [v] = S, p(thF —t7) €
div(P) ®z C. Denote by D, the TDO ring corresponding to the divisor
v]. For each (E,V,p,l) € M, Denote by Ej,) the D, module defined
by Ej) = ju(Ey). Varying (E,V) € M, we obatin &, are M-family of
Dy, -modules on P.

e 0 : P — P is an isomorphism of P with o(t;") = ;.

e M is a uo-gerbe. the derived category D,c(M) of quasicoherent sheaves
on M naturally decomposes as D (M) = D (M)" x D,.(M)~, where
F € Dy(M)* if and only if —1 € py acts as +1 on H'(F) for any 1.



MxP 2 p

P
M

The following is a theorem due to D. Arinkin around 2001.

Theorem 8.1. The functor

Cpi—p : F = Rpaa(€) ®0,0p PLF))1]

is an equivalent between D,.(M)™ and the derived category of Dy, -modules.
The inverse funtor is given by

Op_ g F— Rpl*DRP«iCZM X O>*f[,/] PO 150 p; )[1]



9. Mandala of related moduli spaces
Players

o (C ty,to,--+ ,tn): A base curve.
o[ = Qn(t;y + -+ ty): the extended cotangent line bundle on
C.

e g,n,r, d: Numbers

o N =r?(g— 1)+T<T2_1>n+1: The half of dimension of the moduli
spaces.

e M pp: the moduli space of parabolic connections.

e VM p,;: the moduli space of parabolic Higgs bundles.

e P: the moduli space of parabolic bundles.

e X: the moduli space of generalized monodromy data (Character
variety)

e SN(C)=C x --- x C /S x: N-th Symmmetric Product of C

N
o Hile(]L):HiIbert space of N-points of the total space of L.




Relations of Players

(1) non abelian Hodge theory and Riemann-Hilbert correspondence

Mpy < Mpp % x  dim 2N

nonabelian Hodge

\L forget full map \L Lagangian fibrations

P — P dim N
(2) Hitchin fibration and apparent map
Mpy, — HIBY(L) -+ Mpp  dim 2N

Hitchin fibration BNR-map apparent map

B sN() dim N



Related Problems

e Geometry of Riemann-Hilbert correspondences and Isomonodromic
Deformations of Linear connections = Differential Equations of
Painlevé type. Tau-functions.

e Explicit description of Mp,;, Mpp, P, X.

e Geometric propety of moduli spaces Mp,;, M pp, X such as their
Mixed Hodge polynomials, Simpson conjectures and P = IV con-
jecture.

e Transversaility of Lagangian fibration Mpp — P and Mpp —
SN,

e Special Kahler Geometry and Topological Recursion related to
Mp, — B. (as in the work of Baraglia).

e Geometric Langlands by Fourie-Mukai transoform Mpp x P (as
in the work of Arinkin-Lysenko).
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