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1. Moduli spaces of stable λ-parabolic connectios

1.1. Settings.

•C: a nonsingular projective curve of genus g ≥ 0
• t = {t1, . . . , tn}, a set of n-distinct points on C.

D(t) =
n∑
i=1

ti = t1 + · · · + tn.

•Mg,n = {(C, t) as above}/ ≃: The moduli of (ordered) n-
pointed curves of genus g.

t1 t2 t3
tn

C



1.2. λ-connections. Fix λ ∈ C.

Definition 1.1. (E,∇) is called a λ-connection if

•E : An algebraic vector bundle on C of rank r and of degree d.
• ∇ : E −→ E ⊗ Ω1

C(D(t)): A logarithmic λ-connection. a ∈
OC, σ ∈ E

∇(aσ) = λσ ⊗ da + a∇(σ) λ-twisted Leibniz rule

We denote by

L = Ω1
C(D(t))

the line bundle or the invertible sheaf of meromorphic 1 form on C
having poles on D(t) = t1 + t2 + · · · + tn at most order 1. Later
we may allow the higher order pole D(t) = m1t1+m2t2+ · · ·mntn
with mi ≥ 1. degL = 2g − 2 + n . We assume that n ≥ 1 by a
technical reason.



• λ ̸= 0: linear connection:
(E,∇): λ-connection ⇒ (E, 1λ∇) : a usual connection
Locally near at z = ti, taking a local frame of E near z = ti,
E ≃ O⊕rC,ti

∋ (ak(z))
r
k=1, A(z)

dz
z−ti ∈ Mr(OC,ti)⊗ Ω1

C(D(t))

∇((ak(z))) = λ(dak(z)) + A(z)(ak(z))
dz

z − ti
• λ = 0: Higgs bundle: Denote ∇ = Φ.

(E,Φ): 0-connection ⇒ (E,Φ) :a Higgs bundle, Φ:Higgs field
Twisted Leibniz rule leads: for a local section a ∈ OC, σ ∈ E

Φ(aσ) = aΦ(σ) an OC-linear hom.

Φ ∈ End(E)⊗L. Locally near z = ti, B(z) dz
z−ti ∈ Mr(OC,ti)⊗

L.

Φ((ak(z))) = B(z)(ak(z))
dz

z − ti



1.3. Residues and Local exponets.

• (E,∇), (E,Φ) as above.
• resti(∇) = A(ti), resti(Φ) = B(ti) ∈ End(E|ti): residue homo-

morphisms. A(ti) = (akl)1≤k,l≤r, B(ti) = (bkl)1≤k,l≤r: com-
plex r × r matrices.
•We put an order of eigenvalues of resti(∇) and resti(Φ) respec-
tively, and denote them as

{ν(i)0 , ν
(i)
1 , · · · , ν(i)r−1}

local exponents of ∇ at ti.

•We denote the local exponents of ∇ and Φ by

ν = (ν
(i)
j )1≤i≤n0≤j≤r−1



1.4. Fuchs relation.

Lemma 1.1. For a λ-connection (E,∇) ( resp. a Higgs bundle
(E,Φ)), with singularity at D(t) as above, we have the following
relation.

n∑
i=1

(

r−1∑
j=0

ν
(i)
j ) = −λ degE = −λdresp.

n∑
i=1

(

r−1∑
j=0

ν
(i)
j ) = 0


1.5. The space of local exponents of λ-connections.

N n
r,λ(d) :=

ν = (ν
(i)
j )1≤i≤n0≤j≤r−1 ∈ Cnr

∣∣∣∣∣∣ λd +
∑

1≤i≤n

∑
0≤j≤r−1

ν
(i)
j = 0

 .

N n
r,H = N n

r (0) Higgs bundle case



1.6. Genericity for local exponents.

Definition 1.2. Let ν = {ν(i)j }
0≤j≤r−1
1≤i≤n ∈ N n

r,λ(d).

(1) ν is called resonant, if for some i and j1 ̸= j2, ν
(i)
j1
− ν

(i)
j2
∈ λZ.

(2) ν is called reducible if there exists a subset ν ′ = {ν(i)
j′ } of ν such

that for each i, 1 ≤ i ≤ n, the number of ν
(i)
j′ ∈ ν ′ is a fixed

number k, 1 ≤ k ≤ r−1 and
∑

ν ′ ν
(i)
j′ ∈ λZ where the last sum

is taken over ν ′. If ν is not reducible, ν is called irreducible
(3) If ν is neither resonant, nor reducible, we call ν is generic.

Remark 1.1. If a λ-connection (E,∇) has a subconnection (F,∇|F )
is with 0 < rankF < rankE, the local exponents of (E,∇) is re-
ducible.



1.7. Parabolic connections.

Definition 1.3. Fix (C, t) ∈Mg,n and ν ∈ N n
r (d)

• (E,∇, {l(i)∗ }1≤i≤n): a ν-parabolic connection of rank r and de-
gree d on C

⇐⇒
• (E,∇): a logarithmic connection of rank r and degree d

∇ : E −→ E ⊗ Ω1
C(D(t))

• l(i)∗ : E|ti = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0: a filtration of

E|ti for each i, 1 ≤ i ≤ n such that

(1) dim(l
(i)
j /l

(i)
j+1) = 1 and

(2) (resti(∇)− ν
(i)
j )(l

(i)
j ) ⊂ l

(i)
j+1 for j = 0, 1, · · · , r − 1.



1.8. Parabolic stability. Next, we define α-stability condition on the

ν-parabolic connections (E,∇, {l(i)∗ }1≤i≤n).
• Fix a sequence of rational numbers α = (α

(i)
j )1≤i≤n1≤j≤r such that

(1) 0 < α
(i)
1 < α

(i)
2 < · · · < α

(i)
r < 1

for i = 1, . . . , n and α
(i)
j ̸= α

(i′)
j′ for (i, j) ̸= (i′, j′).

• (E,∇, {l(i)∗ }1≤i≤n): a ν-parabolic connection.

• 0 ⫋ F ⊂ E,∇(F ) ⊂ F⊗Ω1
C(D(t)). Define integers length(F )

(i)
j

by

(2) length(F )
(i)
j = dim(F |ti ∩ l

(i)
j−1)/(F |ti ∩ l

(i)
j ).

Note that length(E)
(i)
j = dim(l

(i)
j−1/l

(i)
j ) = 1 for 1 ≤ j ≤ r.



Definition 1.4. • A ν-parabolic connection (E,∇, {l(i)∗ }1≤i≤n):
is α-stable

⇐⇒
0 ⫋ F ⫋ E, ∇(F ) ⊂ F ⊗ Ω1

C(D(t)),

degF +
∑n

i=1

∑r
j=1 α

(i)
j length(F )

(i)
j

rankF
<

degE +
∑n

i=1

∑r
j=1 α

(i)
j length(E)

(i)
j

rankE

We can define the notion of:

• a ν-parabolic Higgs bundle (E,Φ, {l(i)∗ }1≤i≤n) and
• the α-stability conditions for a ν-parabolic Higgs bundle as in the
same way above.



1.9. Moduli spaces of stable parabolic connections and stable para-
bolic Higgs bundles.

• Fix (C, t) and ν ∈ N n
r (d). We can define the moduli space

of α-stable parabolic connections

(3) Mα
(C,t)(ν, r, n, d)={(E,∇, {l(i)∗ }1≤i≤n)}/ ≃ .

•Moreover for ν ∈ N n
r,H , we can define the moduli space of α-

stable parabolic Higgs bundles:

(4) Mα
(C,t)(ν, r, n, d)H = {(E,Φ, {l(i)∗ }1≤i≤n)}/ ≃ .



1.10. Existence of algebraic moduli space of α-stable ν-parabolic con-
nections.

Theorem 1.1. (Inaba-Iwasaki-Saito RIMS2006 [6], ASPM2006 [7],
Inaba, JAG2013 [5]). There exists the relative fine moduli scheme

π :Mα
(C,t̃)/M̃g,n×N n

r (d)
(r, d, n) −→ M̃g,n ×N n

r (d)

such that π is smooth and quasi-projective.

Corollary 1.1. For fixed (C, t) and ν ∈ N n
r (d), the moduli space

Mα
(C,t)(ν, r, n, d)

is a smooth quasi-projective algebraic scheme (most case irreducible)
of dimension

2r2(g − 1) + nr(r − 1) + 2 = 2N.

MoreoverMα
(C,t)

(ν, r, n, d) admits the natural algebraic symplectic
structure.



1.11. As in the similar way, we can obtain the existence of algebraic
moduli space of α-stable ν-parabolic Higgs bundles (K(D)-pairs of
Boden and Yokogawa).

Theorem 1.2. There exists the relative fine moduli scheme

π :Mα
(C,t̃)/M̃g,n×N n

r (d)
(r, d, n)H −→ M̃g,n ×N n,H

r

such that π is smooth and quasi-projective.

Corollary 1.2. For fixed (C, t) and ν ∈ N n
r,H , the moduli space

Mα
(C,t)(ν, r, n, d)H

is a smooth quasi-projective algebraic scheme (most case variety) of
dimension

2r2(g − 1) + nr(r − 1) + 2 = 2N.

MoreoverMα
(C,t)

(ν, r, n, d)H admits the natural algebraic symplec-

tic structure.



1.12. Example: Moduli space of connections, Painlevé VI case. Con-
sider the case: C = P1, r = 2, n = 4, d = −1 and a generic ν ∈ N 4

2 (−1). We can
normalize t = {t1, t2, t3, t4} = {0, 1, t,∞} and ν = {±ν1,±ν2,±ν3.ν4, 1 − ν4}.
Then the moduli space M(t,ν) = Mα

(P1,t)
(ν, 2, 4,−1) is an algebraic surface.

dimM(t,ν) = 2N = 4(0 − 1) + 4 × 2 + 2 = 2. M(t,ν) has a nice com-
pactification St,ν = M(t,ν). St,ν is a 8-points blowing up of Σ2 = P(OP1 ⊕
OP1(−2)). The points of blowing up depends on the local exponents ν. See be-
low. The anti-canonical divisor of St,ν is given −KSt,ν = 2Y0+ Y1+ Y2+ Y3+ Y4.

M(t,ν) = St,ν \ Y .

St,ν

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 =∞

π

P1

∞-section

Y 2
0 = −2

M(t,ν) = St,ν \ Y
ν4

1− ν4



1.13. Example: Moduli space of parabolic Higgs bundles. Consider
the case: C = P1, r = 2, n = 4, d = −1 and a generic ν ′ ∈ N 4

2 (0). We can
normalize t = {t1, t2, t3, t4} = {0, 1, t,∞} and ν ′ = {±ν1,±ν2,±ν3.±ν4}. Then
M(t,ν ′)H =Mα

(P1,t)
(ν ′, 2, 4,−1)H is also an algebraic surface. dimMH(t,ν

′) =

2N = 4(0 − 1) + 4 × 2 + 2 = 2. MH(t,ν
′) has a nice compactification St,ν ′ =

M(t,ν ′)H. St,ν ′ is a 8-points blowing up of Σ2 = P(OP1⊕OP1(−2)). −KSt,ν′
=

2Y0 + Y1 + Y2 + Y3 + Y4. M(t,ν ′)H = St,ν ′ \ Y . We can see that algebraic

structures of M(t,ν) and M(t,ν ′)H are different.

St,ν′

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 =∞

π

P1

∞-section

Y 2
0 = −2

M(t,ν ′)H = St,ν′ \ Yν4

−ν4



2. The Riemann-Hilbert correspondence

2.1. Moduli space of representations of π1(C \D(t), ∗). Define:
RPr

(C,t) = Hom(π1(C \D(t), ∗), GLr(C))//Ad(GLr(C))

or
RPr,s

(C,t) = Hom(π1(C \D(t), ∗), SLr(C))//Ad(SLr(C))

By definition, RPr
(C,t) and RP

r,s
(C,t) are affine varieties associated to the invariant

ring of matrices.
Replacing T =M′

g,n by a certain finite étale covering u : T ′ −→ T and varying

((C, t), ν) ∈ T ′ ×N (n)
r (d) we can define a morphism

(5) RH :Mα
(C,t)/T ′(r, n, d) −→ RP

r
n,T ′

which makes the diagram

(6)

Mα
(C,t̃)/T ′(r, n, d)

RH−−→ RPr
n,T ′

Φr,n,d

y yφrn

T ′ ×N (n)
r (d)

Id×rh−−−→ T ′ ×A(n)
r

commute.



2.2. Riemann-Hilbert correspondences.

Theorem 2.1. (Inaba-Iwasaki-Saito, RIMS2006 [6], ASPM2006[7], Inaba JAG2013[5]
). Assume that α is generic. The Riemann-Hilbert correspondence

(7) RH :Mα
(C,t̃)/T ′(r, n, d) −→ RP

r
n,T ′ ×A(n)

r
N (n)

r

is a proper surjective bimeromorphic analytic morphism. In particular, for each

((C, t),ν) ∈ T ′ ×N (n)
r (d), the restricted morphism

(8) RH((C,t),ν) :Mα
((C,t),ν)(r, n, d) −→ RP

r
(C,t),a

gives an analytic resolution of singularities ofRPr
(C,t),a where a = rh(ν) is a image

of small Riemann-Hilbert correspondence rh.



3. General schemes of the geometry of Riemann-Hilbert
correspndences

Consider the following diagram:

M̃
RH−−→ R̃

π̃

y yφ̃

T̃ ×N
(1×µ)−−−→ T̃ × A.

Theorem 3.1. If the Riemann-Hilbert map

RHt,ν : M̃t,ν −→ R̃t,µ(ν)

is a proper, surjective bimeromorphic holomorphic map for any (t,ν) ∈
T̃×N . Then the corresponding isomonodromic differential equations satisifies the
geometric Painlevé property.



Isomonodromic Flows: ν Generic Case

The Riemann-Hilbert correspondence RHν induce an analytic isomorphisms for
all t ∈ T̃n. Pulling back the constant section on the right hand side, we have the
isomonodromic flows on the left hand side. These isomondromic flows satisfy the
Geometric Painlevé property.

t0 tt0 t

Mα
n (t,ν, L)

R(Pn,t0)a

RHν

constant flows = monodromy is constant

Isomonodromic flows = Painlevé or Garnier flows

=

R(Pn,t)a
||

Mα
n (t0,ν, L)

T̃n × {ν} T̃n × {a}

≃

Isomonodromic Flows and Painlevé or Garnier Flows

Figure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic ν



Isomonodromic Flows: Special Case
If ν is special (resonant, reducible), the right hand side have singularity. On the other hand, the left hand side

is always nonsingular, hence RHν gives a simultaneous resolution of singularities. Riccati flows.

t0 tt0 t

Mα
4 (t,ν, L)

R(P4,t0)a

RHν

constant flows = monodromy is constantIsomonodromic flows = Painlevé flows

=

R(P4,t)a
||

Mα
4 (t0,ν, L)

T̃4 × {ν} T̃4 × {a}

RHν contracts (−2)-rational curves onto singular points of type A1.

(−2)-rational curve

Riccati flows are tangent to family of (−2)-curves A1 singularity of R(P4,t0)a.

contraction

Case of Painlevé V I

Figure 2. Riemann-Hilbert correspondence and isomonodromic
flows for special ν



3.1. Geometric Painlevé property of the NDFE arrising from Isomon-
odromic deformation of LODE.

Corollary 3.1. ([6], [7], [5]) Differential equations arrising from
isomonodromic deformations of linear connections with regular singu-
larities over a curve satisfies the geometric Painlevé property.

Remark 3.1.We can extend the above result in the following cases;

• Connections of any rank with generic unramified irregular singu-
larity on smooth projective curves. (Inaba-Saito, Kyoto JM2012
[9])
• Logarithmic connections of any rank with fixed spectral type with
multiplicities. (Inaba-Saito, Math. Soc. Japan 2018).
• Generic ramified irregular singular case (Inaba. in preparation).



3.2. Moduli spaces of monodromy representations and generalized
Stokes data related to Painlevé equations. Monodromy variety for
Painlevé VI case
Define

RP2,s
4 = Hom(π1(P

1 \ {t1, t2, t3, t4}, SL(2,C))//Ad(SL2(C))

= {(M1,M2,M3,M4) ∈ SL2(C),M1M2M3M4 = I2}//Ad(SL2(C))

= {(M1,M2,M3) ∈ SL2(C)}//Ad(SL2(C))

We can describe the moduli space as follows.
Take Mi ∈ SL2(C) for i = 1, 2, 3 and set

ai = Tr[Mi], i = 1, 2, 3 a4 := Tr[M4] = Tr[M−1
4 ] = Tr[M1M2M3]

For a circle permutation (i, j, k) of (1, 2, 3), set

xi = Tr[MjMk].

Then the invariant ring is given by

C[M1,M2,M3]
SL2(C) = C[x1, x2, x3, a1, a2, a3, a4]/(f (x, a))

where we set the cubic polynomial given by Fricke-Klein, Jimbo and Iwasaki.

f (x, a) = x1x2x3 + x21 + x22 + x23 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a)



θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),

θ4(a) = a1a2a3a4 + a21 + a22 + a23 + a24 − 4.

Theorem 3.2. The monodromy variety of Painlevé VI is isomorphic to the
affine variety

X = RP2,s
4 = SL2(C)3//Ad(SL2(C))

= Spec(C[x1, x2, x3, a1.a2, a3, a4]/(f (x, a))

= {(x, a) ∈ C7, f (x, a) = 0} ⊂ C7

Moreover for a fixed a = (a1, a2, a3, a4) ∈ C4

Xa = RP2,s
4,a = Spec(C[x1, x2, x3]/(f (x, a))) = Xa ⊂ C3 ⊂ P3.

The Riemann-Hilbert correspondence induces an analytic isomorphism for generic
ν = (±νi, i = 1, 2, 3, ν4, 1− ν4). ai = 2 cos(−2πνi).

RHt,ν : M(t,ν)
≃−→ Xa

For special ν, we have a proper bimeromorphic analytic morphism (analytic reso-
lution of singularities).

RHt,ν : M(t,ν)−→Xa



a1 = 2

ai = 2 A4 ≃ C4

X = ∪a∈A4Xa

A1-singularity

∆ = 0



4. Types of Singularities of Linear connetions
Let us list up the types of irregular singular points of lin. connetions of rank

2 on P1 which induces iso-Stokes-Monodromy differential equations (=Lax equa-
tions)isomorphic to the Painlevé equations of the types in the table. This re-
sults follows from original result due to Garnier, Okamoto, Miwa-Jimbo-Ueno and
Ohyama, Kawamuko, Sakai and Okamoto. (Moreover Flaschka and Newell obtained
PII(FN).)

Dynkin Painlevé equation s(0) s(1) s(∞) s(t) no. of parameters

D̃4 PVI 0 0 0 0 4

D̃5 PV 0 0 1 - 3

D̃6 deg PV= PIII(D6) 0 0 1/2 - 2

D̃6 PIII(D6) 1 - 1 - 2

D̃7 PIII(D7) 1/2 - 1 - 1

D̃8 PIII(D8) 1/2 - 1/2 - 0

Ẽ6 PIV 0 - 2 - 2

Ẽ7 PII(FN)=PII 0 - 3/2 - 1

Ẽ7 PII - - 3 - 1

Ẽ8 PI - - 5/2 - 0
Table 1. The type of singularities for linear problems and Pailevé equations



Equations of Moduli space of Stokes-Monodromy data

The following result is due to a joint work with Marius van der Put
([21]).

(1) PVI x1x2x3 + x21 + x22 + x23 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a) = 0,
θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),
θ4(a) = a1a2a3a4 + a21 + a22 + a23 + a24 − 4. with a1, a2, a3, a4 ∈ C.

(2) PV x1x2x3 + x21 + x22 − (s1 + s2s3)x1 − (s2 + s1s3)x2 − s3x3 + s23 + s1s2s3 + 1 = 0
with s1, s2 ∈ C, s3 ∈ C∗.

(3) deg PV x1x2x3 − x21 − x22 + s0x1 + s1x2 − 1 = 0.
with s0, s1 ∈ C.

(4) PIII(D6) x1x2x3 + x21 + x22 + (1 + αβ)x1 + (α + β)x2 + αβ = 0
with α, β ∈ C∗.

(5) PIII(D7) x1x2x3 + x21 + x22 + αx1 + x2 = 0
with α ∈ C∗.

(6) PIII(D8) x1x2x3 + x21 − x22 − 1 = 0. wrong.
(7) PIV x1x2x3 + x21 − (s22 + s1s2)x1 − s22x2 − s22x3 + s22 + s1s

3
2

with s1 ∈ C, s2 ∈ C∗.
(8) PII(FN) x1x2x3 + x1 − x2 + x3 + s1 = 0, with s1 ∈ C.
(9) PII x1x2x3 + x1 + x2 + αx3 + α + 1 = 0 with α ∈ C∗.
(10) PI=PI(Ẽ8) x1x2x3 + x1 + x2 + 1 = 0.



4.1. Correction of PIII(D8) and P = W conjecture.
PIII(D8) S1 : x1x2x3 + x21 − x22 − 1 = 0. wrong.
Simple mistake:
PIII(D8) S2 : x1x2x3 + x21 + x22 − 1 = 0.
More seriously, one should mode out by S2 by the involution σ induced by

σ : (x1, x2, x3) −→ (−x1,−x2.x3)

Then one has the following equation for S3 = S2/ < σ >:

S3 : y1y2x3 + y22 + y21 − y1 = 0

S3 has a compactication S3 ⊂ P3 as a singular cubic surface with A4 singularity at the boundary

S3 \S3 and one can see easily the weight filtration of H2(S3,Q) coming from H2(Ŝ3,Q) is 0 where

Ŝ3 is the minimal resolution of S3. This corresponds to the fact that the corresponding pervese
Leray sequence of Hitchin fibration π : MDol −→ C has no contribution from H1(C, R1π∗Q).
This is a special case of P = W conjecture which was proved by S. Szabo (arXiv:1802.03798).
Actually, he checked the conjecture for all the cases of 10 types.



5. Apparent singularities (a joint work with S. Szabo)

5.1. Apparent singularities of connections and Higgs bundles.

•C, t as before.
•We set L = Ω1

C(t1 + · · · + tn). We assume that n ≥ 1 and
degL = 2g − 2 + n > 0.

Consider the moduli spaces

(9) MDR(ν) =Mα
(C,t)(ν, r, n, d)={(E,∇, {l(i)∗ }1≤i≤n)}/ ≃ .

(10)

MH(ν) =Mα
(C,t)(ν, r, n, d)H = {(E,Φ, {l(i)∗ }1≤i≤n)}/ ≃ .

For simplicity, we assume that ν ∈ N n
r (d) or ν ∈ N n

r,H are non-

resonant and so generic such that all members of moduli spaces are
irreducible.



Proposition 5.1. Assume that ∃σ ∈ H0(C,E)\{0} and degL =
2g − 2 + n ≥ 1 and degD = n ≥ 1. Moreover assume that (E,∇)
(resp. (E,Φ) ) is irreducible. Set

(11) F = ⊕r−1
j=0L

−j = OC ⊕ L−1 ⊕ · · · ⊕ L−(r−1).

∃ a natural embedding F ↪→ E such that H0(C,F ) ≃ Cσ ⊂
H0(C,E). Define the torsion sheaf TA by the exact sequence

(12) 0 −→ F −→ E −→ TA −→ 0,

Then

lengthTA = d− r(g − 1) + r2(g − 1) + n
r(r − 1)

2
.



Definition 5.1. For an irreducible parabolic connection (E,∇, l)
(resp. irreducible parabolic Higgs bundles (E,Φ, l) ) and a non-zero
section σ, we call the support of TA apparent singular points of the
parabolic connection (E,∇, l) (resp. (E,Φ, l)) with the cyclic vector
σ.



Now assume that degE = d = r(g−1)+1. We have dimH0(C,E) =
dimH1(C,E)+1 by Riemann-Roch. If moreover H1(C,E) = 0, we
have a non-zero section σ ∈ H0(C,E) ≃ Cσ unique up to non-zero
scalar multiplications.

Theorem 5.1. Under the same notation and assumption as before,
let us assume that

(13) d = degE = r(g − 1) + 1,

(14) H1(C,E) = 0.

Then we have a natural unique embedding F ↪→ E which yields

(15) 0 −→ F −→ E −→ TA −→ 0.

Then the sheaf TA is a torsion sheaf of length

(16) N = r2(g − 1) + n
r(r − 1)

2
+ 1.



5.2. The case of parabolic Higgs bundles.

• Let (E,Φ, l) be the ν-parabolic Higgs bundles of degree d =
degE = r(g−1)+1 and assume that dimH0(C,E) = 1. Again
we set L = Ω1

C(D).
•We have a canonical exact sequence

0 −→ F −→ E −→ T −→ 0

with F = ⊕r
j=1L

−(j−1) and with apparent singularities

suppT = {q1, · · · , qN}
where

N = r2(g − 1) + n
r(r − 1)

2
+ 1 =

1

2
dimMH(ν)



5.2.1. Spectral curves. Let

p : P = P(OC ⊕ L−1) −→ C

be the P1-bundle over C which is a relative compactification of the total space of
L −→ C. The canonical section x ∈ H0(P,OP (1)⊗ p∗(L)) can be used to define
the spectral curve

Cs : det(xIr − Φ) = xr − s1x
r−1 − s2x

r−2 − · · · sr = 0 ⊂ L ⊂ P

with the natural map π : Cs −→ C and si ∈ H0(C,Li).

P

C

p

C+

C−

x

y

t1 t2 tn

P \ C− ≃ L

Cs

Figure 3. The ruled surface and the curve



Proposition 5.2. [BNR, [3]]. Assume that Cs is a smooth and irreducible Then
there exists one to one correspondence

(E,Φ, l)⇔ (π : Cs −→ C, ξ)

where ξ is a line bundle on Cs. The correspondence ⇐=is given by π∗ξ = E and
the structure of π∗OCs-algebra.

Since H0(Cs, ξ) = H0(C,E) = C, we see that a unique nonzero effective diviosr
δ of degree

deg ξ = degE − degF = r(g − 1) + 1 + (2g − 2 + n)
r(r − 1)

2
= N.

We have the natural exact sequence

0 −→ OCs −→ ξ −→ T̃ −→ 0

0 −→ π∗OCs −→ π∗ξ −→ π∗T̃ −→ 0

and π∗OCs ≃ F , π∗ξ = E and π∗T̃ = T .

0 −→ F −→ E −→ T −→ 0

5.3. Higgs case. For (E,Φ, l), take the data of spectral curve and the line bundle
(π : Cs −→ C, ξ).



SinceH0(C,E) a nonzero section σ, there exist a non-zero section σ̃ ∈ H0(Cs, ξ)
such that π∗(σ̃) = σ. Let δ = p1+ · · ·+ pN be the zero divisor of σ̃. We have the
exact sequence of sheaves on Cs

0 −→ OCs

σ̃−→ OCs(δ) −→ Tδ −→ 0

The pushforward of this sequence

0 −→ π∗OCs −→ π∗ξ −→ π∗Tδ −→ 0

is isomorphic to
0 −→ F −→ E −→ T −→ 0

So we have

π(δ) =

N∑
ı=1

π(pi) =

N∑
i=1

qi.

0 −→ F −→ E −→ T −→ 0
↓ Φ ↓ Φ ↓ ⊕Φqi

0 −→ F ⊗ L −→ E ⊗ L −→ T ⊗ L −→ 0

The dual coordinates {p1, · · · pN}.
pi = Φ(qi) ∈ Lqi



5.4. Geometric aspects of Higgs cases. Let us set

MH(ν)
0 = {(E,Φ, l), degE = r(g − 1) + 1, H0(C,E) ≃ C}.

Then we have the following

MH(ν)
0 ≃ M 0 := {(Cs, ξ)}

φ−→ HilbN(L)
↓ ↓ ↓

HilbN(C) |Cs| HilbN(C)

apparent map Hitchin fibration

φ((Cs, ξ)) = Iδ : Ideal sheaf of δ ⊂ Cs ⊂ L

In many known cases, we can check that

φ is a dominant birational morphism,

and we expect that this statement is always true.



6. Moduli Spaces of Parabolic Bundles

For simplicity, we will consider only the full flag case.

• Pr
d : the moduli stack of quasiparabolic bundles (E, l) = (E, {l(i)∗ }1≤i≤n)

of rank r and degree d over (C, t).

Definition 6.1. (1) (E, l) is simple if H0(C,F0) = C.
(2) (E, l) is decomposable if there exit quasiparabolic bundles (F1, l1)

and (F2, l2) such that (E, l) ≃ (F1, l1) ⊕ (F2, l2) (after renum-
bering of filtrations).

(3) (E, l) is indecomposable if it is not decomposable.

Let us also denote byMα
(C,t)

(ν, r, d) the moduli stack of α-stable

connection (E,∇, l) with the given invariants.



7. The image of ν-parabolic connections

For simplicity, we propose the following:

Assumption 7.1. The local exponents ν is generic so that all
(E,∇, l) is irreducible.

Then we have the morphism from the stack to the coarse moduli
space of α-stable connections

Mα
(C,t)(ν, r, d) −→M

α
(C,t)(ν, r, d).

Moreover, we have a natural forgetful morphism of stacks

π :Mα
(C,t)(ν, r, d) −→ P

r
d, π((E,∇, l)) = (E, l).

Question 7.1.Determine the image Pr,flat
d of π

π(Mα
(C,t)(ν, r, d)) = P

r,flat
d ⊂ Pr

d



Theorem 7.1. If (E, l) is simple, (E, l) ∈ Pr,flat
d

Let Pr,s
d the moduli stack of simple quasiparbolic bundles. We ob-

tain an open embedding

Pr,s
d ⊂ P

r,flat
d .

For C = P1 and r = 2, d = 0, Arinkin and Lysenko showed that

Theorem 7.2. For C = P1, (E, l) ∈ P2
0 , the following are equiva-

lent.

(1) (E, l) is simple.
(2) (E, l) is undecomposable.
(3) (E, l) is flat, that is, (E, l) ∈ Pr

d.

So in the case of C = P1 with (t1, · · · , tn), n ≥ 4

P2,s
0 = P2,ud

0 = P2,f lat
0



Moreover let us assum that the coarse moduli space of Pr,flat
d exists,

and we obtain the natural morphism

Pr,flat
d −→ P

r,flat
d

which has a Gm-torsor structure.

In good case, P
r,flat
d becomes a sheme, but it may be nonseparated

schme.
We have the following commutative diagram.

π :Mα
(C,t)

(ν, r, d)0 −→ Pr,flat
d

↓ ↓
π1 :Mα

(C,t)
(ν, r, d)0 −→ P

r,flat
d



7.1. The coarse moduli for C = P1, n = 4 Painlevé VI case. Take
C = P1, r = 2, n = 4, d = −1 and a generic ν ∈ N 4

2 (−1). We can normalize
t = {t1, t2, t3, t4} = {0, 1, t,∞} and ν = {±ν1,±ν2,±ν3.ν4, 1 − ν4}. Then
M(t,ν) =Mα

(P1,t)
(ν, 2, 4,−1) is an algebraic surface.

We have isomorphisms

P 2,f lat
−1 = P 2,s

−1 = P 2,ud
−1 = P

and a natural morphism

M =Mα
(P1,t)(ν, 2, 4,−1) −→ P.

Theorem 7.3. The moduli space of quasiparbolic bundles P is a nonseparated
scheme obtained by two copies of P1 identifying at P1 \ {t1, · · · , t4}. There are
two points t±i ∈ P for each i.



7.2. C = P1 and t = (t1, · · · , t5). Consider the case of C = P1 with 5 singular
points and r = 2, d = −1. Frank Loray an I described P = P 2,f lat

−1 as follows.

Theorem 7.4.
P = V̂ ∪ V ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5

Here V ≃ P2 and there is a natural embedding of P1 −→ ∆ ⊂ P2, whose image
is a conic ∆. Blowing up the image of five points t1, · · · , t5 ∈ ∆ ⊂ P2, we obtain
the

V̂ −→ V ≃ P2.

Then we have 16-(-1) curves on V̂ and we have 5 blowing downs

V̂ −→ Vi ≃ P2

besides original blowing up. Patching these projective surfaces by these biratinal
map, one can obtain the moduli space P .



8. A result of Arinkn and Lysenko

In case of C = P1, t = (t1, · · · , t4), r = 2, d = 0.

• (E,∇, ϕ, l) such that (E,∇, l) ∈ Mα
(P1,t)

(ν, 2, 4, 0) with an isomorphism

ϕ : ∧2E −→ 0̧P1.
•M: the moduli stack of (E,∇, ϕ, l)
• P is the moduli space of undcomposable rank 2-bundles.
• j : U = P1 \ {t1, · · · , t4} ↪→ P . Consider [ν] :=

∑4
i=1 νi(t

+
i − t−i ) ∈

div(P ) ⊗Z C. Denote by Dν the TDO ring corresponding to the divisor
[ν]. For each (E,∇, ϕ, l) ∈ M, Denote by E[ν] the Dν module defined
by E[ν] = j∗!(E|U). Varying (E,∇) ∈ M, we obatin ξ[ν] are M-family of
D[ν]-modules on P .
• σ : P −→ P is an isomorphism of P with σ(t±i ) = t∓i .
•M is a µ2-gerbe. the derived category Dqc(M) of quasicoherent sheaves
on M naturally decomposes as Dqc(M) = Dqc(M)+ × Dqc(M)−, where
F ∈ Dqc(M)± if and only if −1 ∈ µ2 acts as ±1 on H i(F) for any i.



M× P
p2−→ P

p1 ↓
M

The following is a theorem due to D. Arinkin around 2001.

Theorem 8.1. The functor

ΦM−→P : F −→ Rp2,∗(ξ[ν] ⊗OM×P p∗1(F))[1]

is an equivalent between Dqc(M)− and the derived category of D[ν]-modules.
The inverse funtor is given by

ΦP−→M : F −→ Rp1∗DRP ((idM × σ)∗ξ[ν] ⊗OM×O p∗2F)[1].



9. Mandala of related moduli spaces

Players

• (C, t1, t2, · · · , tn): A base curve.
• L = ΩC(t1 + · · · + tn): the extended cotangent line bundle on
C.
• g, n, r, d: Numbers
•N = r2(g−1)+ r(r−1)

2 n+1: The half of dimension of the moduli
spaces.
•MDR: the moduli space of parabolic connections.
•MDol: the moduli space of parabolic Higgs bundles.
• P : the moduli space of parabolic bundles.
• X : the moduli space of generalized monodromy data (Character
variety)
• SN (C) = C × · · · × C︸ ︷︷ ︸

N

/SN : N-th Symmmetric Product of C

•HilbN (L):Hilbert space of N -points of the total space of L.



Relations of Players

(1) non abelian Hodge theory and Riemann-Hilbert correspondence

MDol ⇔ MDR
RH−→ X dim 2N

nonabelian Hodge

↓ forget full map ↓ Lagangian fibrations

P = P dim N

(2) Hitchin fibration and apparent map

MDol −→ HilbN (L) ← · · · MDR dim 2N
Hitchin fibration BNR-map apparent map

spectral curve

↓ ↘ ↓ ↙

B SN (C) dim N



Related Problems

• Geometry of Riemann-Hilbert correspondences and Isomonodromic
Deformations of Linear connections = Differential Equations of
Painlevé type. Tau-functions.
• Explicit description of MDol,MDR,P ,X .
• Geometric propety of moduli spacesMDol,MDR,X such as their
Mixed Hodge polynomials, Simpson conjectures and P = W con-
jecture.
• Transversaility of Lagangian fibrationMDR −→ P andMDR −→
SN (C).
• Special Kähler Geometry and Topological Recursion related to
MDol −→ B. (as in the work of Baraglia).
• Geometric Langlands by Fourie-Mukai transoform MDR×P (as
in the work of Arinkin-Lysenko).
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