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Enriques surfaces straddle the land between K3 surfaces and ratio-
nal surfaces. With rational surfaces, more precisely rational elliptic
surfaces, they share the Hodge diamond ... With K3 surfaces they
share the potential of many competing elliptic fibrations. To borrow
notions from paleontology, their similarities with rational surfaces
are analogies®, with K3 surfaces homologies®. (MR986969)
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A Enriques surfaces with many semi-symplectic
automorphisms (Sep. 2010, Oberwolfach)

An automorphism of a K3 surface S is sympletic if it acts on H°(Og(Kg)) trivially.
All finite groups which have symplectic actions on K3 surfaces are classified in terms
of the Mathieu group My, by Mukai [12] and Kondo [11]. An automorphism of
an Enriques surface S is semi-symplectic if it acts on H°(Og(2Kg)) trivially. A
smart classification similar to K3 surfaces is desirable for semi-symplectic actions
of Enriques surfaces but still far from complete investigation. Here I propose a

restricted class of semi-symplectic actions.

Definition An effective semi-symplectic action of a finite group G on an En-
riques surface is M -semi-sympletic if the Lefschetz number of g equals 4 for every
automorphism ¢g € G of order 2 and 4.

Here the Lefschetz number of an automorphism ¢ is the Euler number of the fixed
point locus Fix o, and equal to the trace of the cohomology action of o on H*(.S, Q).

M-semi-symplectic actions are closely related to the symmetric group Gg of degree
6 via the Mathieu group M, though &g itself has no semi-symplectic actions. It
is known that &g has six maximal subgroups upto conjugacy, and four modulo
automorphisms. The four subgroups are

1. the alternating group s,
2. the symmetric group G5 of degree 5,
3. (C3)%.Dg, the normalizer of a 3-Sylow subgroup, and

4. the direct product &4 x (5,

where C, and D,, denote a cyclic and a dihedral group of order n, respectively.

Theorem The three maximal subgroups g, S5, (C3)?.Dg and the abelian group
(C)? have M -semi-symplectic actions on Enriques surfaces.

Remark By Kondo [10], there are two Enriques surfaces whose automorphism
groups are isomorphic to &5. One is called type VII and the other is the quotient
of the Hessian of a special cubic surface (type VI). The action of &5 is M-semi-
symplectic for the former and not for the latter.

The action of the three maximal subgroups are constructed refining the method
of [13]. We use

1. embeddings of G4 into the Mathieu group M,
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2. the action of M5 x C5 on the Leech lattice, and
3. Torelli type theorem for Enriques surfaces.

An Enriques surface S = Km(FE; X Esy)/e of Lieberman type has a semi-symplectic
action of (Cy)* by translation by 2-torsion points. One involution o € (Cy)* is
numerically trivial in the sense of [17], that is, its Lefschetz number is the maximal
(= 12). Moreover, the action of (Cy)* is M-semi-symplectic except for o. Hence S
has an M-semi-symplectic action of (Cy)3

Question Is a finite group isomorphic to a proper subgroup of the symmetric
group Gg, if it has an (effective) M-semi-symplectic action on an Enriques surface?

The definition of M-semi-symplectic action is modeled on the permutation group
Mo of degree 12. The permutation type of ¢ € M, depends only on its order n if
it has a fixed point (on the operator domain of cardinality 12). The type and the
number of fixed points py(n) are as follows.

n 1 2 3 4 5 6 8 11
permutation type | (1) (2)* (3)° (4)* (5)° (6)(3)(2) (8)(2) (11)
) 12 4 3 4 2 1 2 1

It is well known that a symplectic involution of a K3 surface have exactly 8 fixed
points. But for an involution ¢ of an Enriques surface, the fixed point set Fixo is
not necessarily finite and the Lefschetz number varies from —4 to 12. (Note that
every involution of an Enriques surface is semi-symplectic.) The required number
4 in our definition is one half of 8, the mean of —4 and 12 and equal to p(2). A
semi-symplectic action of G on an Enriques surface is M-semi-symplectic if and only
if the Lefschetz number and p, are the same on G since the order of semi-symplectic
automorphism is either < 6 or oo by H. Ohashi.

B Enriques surfaces whose automorphism groups
are virtually abelian (Sep. 2012, Oberwolfach)

A (minimal) Enriques surface S is the quotient of a K3 surface X by a fixed-point-
free involution € : X — X. We consider it over the complex number field. Its Picard
group is isomorphic to the second cohomology group H?(S,Z). The torsion part of
H?(S,Z) is generated by the first Chern class ¢;(S). The torsion free part is an even
integral unimodular lattice of rank 10. An Enriques surface S is algebraic and the
automorphism group Aut S is discrete. Its number of moduli is 10.
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If an Enriques surface S is (moduli theoretically) very general, then S does not
contain a smooth rational curve on it. Every positive isotropic divisor class on such
an S defines an elliptic fibrtation whose Mordell-Weil rank!’is 8.  In particular,
Aut S is infinite if S is very general. The automorphism group Aut S shrinks when
S becomes special and has smooth rational curves on it. As the most extreme case,
Nikulin[21] and Kondo[10] classified the Enriques surfaces with only finitely many
automorphisms into seven types I, —, VIIL. In this talk we explain our recent result
(and its proof) on the next case. Recall that a group is called virtually abelian if it
contains a finitely generated abelian group as normal subgroup of finite index.

Theorem A. The automorphism group Aut S of an Enriques surface S is virtually
abelian if and only if either Aut S is finite or S is of (lattice) type Es, that is, the
twisted Picard group Pic® S contains the (negative definite) root lattice of type Es as
sublattice.

The following lists the lattice type of Enriques surfaces with virtually abelian
automorphism groups.

No. I | II 11 1A% \Y%
Lattice type | Es | Do | (Ds+ Ay + A1)y | (Ds+ Ds)w | (Er+ As+ Apw
Lieberman type Kondo-Mukai type
(see Example C) (cf. [14])
VI VII
Es + Ay (Ag + Ay
Hessian (cf. [6]) | Fanol§]

Here L™ denotes an odd (integral) lattice which contains L as sublattice of index
2. See Definition B below for lattice type L or Ly, which is the key of our proof of
the theorem. Our lattice type is a refinement of the root invariants of Nikulin[21]
in terms of the twisted cohomology group.

B.1 Twisted cohomology

The kernel of the Gysin map 7, : H*(X,Z) — H?*(S,Z) is a free Z-module of rank
12, which we call the twisted cohomology group of an Enriques surface S and denote
by H¥(S,Z), where m : X — S is the canonical (or universal) covering. H“(S,Z)
is isomorphic to the second cohomology group H?(S,Z%) of S with coefficients in
the unique non-trivial local system Z¢. Hence, the natural non-degenerate pairing

10For an elliptic fibration ® : S — P!, the rank of the Mordell-Weil group of its Jacobian fibration
is called the Mordell-Weil rank of ® for short.
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L x LE — Zg induces a Z-valued bilinear form on H* (.S, Z), for which the following
holds (cf. [5]):

e H¥(S,Z) is an odd unimodular lattice I5 ;o of signaure (2, 10).

o H“(S,Z) carries a polarized Hodge structure H*(S) of weight 2 with Hodge
number (1,10, 1).

e The (1,1)-part of H¥(S) is the kernel of the pushforward map 7, : Pic X —
PicS. We call it the twisted Picard lattice and denote by Pic” S.

e The modulo 2 reduction H¥(S,Z)®Z/2 is canonically isomorphic to the usual
cohomology H?(S,Z/2) with Z/2 coefficient.

The twisted Picard lattice Pic” S is negative definite, and does not contain a
(—1)-element by Riemann-Roch. Let L be such a lattice, that is, negative definite
and Z (—1)-element.

Definition B. An Enriques surface S is of lattice type L (resp. Ly ) if the twisted
Picard lattice Pic® S contains L as primitive sublattice and if the orthogonal com-
plement of L «— H“(S,Z) is odd (resp. even).

The orthogonal complement is even if and only if L ® Z/2 contains Wu’s class,
that is, ¢;(S) modulo 2. The number of moduli of Enriques surfaces of (lattice) type
L or Ly, is equal to 10 — rank L.

Example C. An Enriques surface is called Lieberman type if it is isomorphic to
the quotient of a Kummer surface Km(E; x E,) of product type by e, where E;,
i = 1,2, is an elliptic curve and £ is the composite of (—1g, 1) and the translation
by a 2-torsion (aq,az) with 0 # a; € (E;)2). An Enriques surface S is of Lieberman
type if and only if it is of type Dgy, that is, Pic” S contains Dg primitively and
the orthogonal complement of Dg < H“(S,Z) is isomorphic to U + U(2), where

0 1
U (resp. U(2)) denotes the rank 2 lattice given by the symmetric matrix

(resp. ). (The orthogonal complement is isomorphic to (1) 4+ (—1) + U(2)

0
if S is of type Dg.) The IIIrd Enriques surface in the above table is of Lieberman

If C'is a smooth rational curve on an Enriques surface, then its pullback splits
into two disjoint rational curves Cy and C). Their difference [Cy] — [C}] defines a
(—2)-element in Pic® S up to sign, which is called the twisted fundamental class of C'.
In particular, a tree of smooth rational curves on S of AD E-type defines a negative
definite sublattice of the same type in Pic® S.
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B.2 Outline of proof of Theorem A

Assume that Aut.S is not finite but virtually abelian. Then S has an elliptic
fibration @y : S — P! of positive Mordell-Weil rank, and all other elliptic fibrations
® £ &) have Mordell-Weil rank zero. In particular S has one and only one elliptic
fibration of positive Mordell-Weil rank modulo Aut S. By an argument similar to
[21], S is of type either Es, Ag, E7 + Ag, (A5 + As5)T or (Dg + A3z + Ay);,. Except
for Eg, S has more than one elliptic fibrations of positive Mordell-Weil rank. For
example, in the cases of type Ag and (A5 + A5)™, it is deduced from the action of
the alternating group 2As. In the last case, it is deduced from the fact that S is the
normalization of the diagonal Enriques sextic

- 9 9 9 9 1 1 1 1
S (x0+x1+a:2+x3)+\/—_1<?—l—P+?—l—P) Tor1T223 = 0
0 1 2 3
in P3. (This equation was found in [18] as the octahedral Enriques sextic.) In the
case of type Eg, Aut S is virtually abelian by Barth-Peters[3, §4].

C Enriques surfaces as neighbors of rational sur-
faces and vice versa (May 2013, Oberwolfach)

Enriques surfaces are similar to K3 surfaces. Both are of Kodaira dimension one
and can be studied lattice theoretically by virtue of Torelli type theorem. But
Enriques surfaces, with the same birational invariants ¢ = p, = 0, are similar
to rational surfaces too. They mildly degenerate to rational surfaces with quotient
singularities of type (1,1)/4, and change into rational elliptic surfaces by logarithmic
transformation. This similarity and intimacy is very useful in studying Enriques and
rational surfaces. In my talk I discussed Theorems A—C on automorphism groups
from this view point.

Let R5 be a quintic del Pezzo surface, the blow-up of the projective plane P? at
four points in general position, say, at (xg : x1 : xg) = (1 : £1 : £1). It has ten
lines, that is, smooth rational curves of anti-canonical degree one, and the dual
graph of their configuration is the Petersen graph. There are 15 intersection points
among the ten lines in total. Let R_iy be the blow-up of R5 at the 15 intersection
points. The Cremona transformation (x : z; : x2) +— (1/x : 1/x1 : 1/x9) induces
an involution of R_jg5, which we denote by ¢. Taking conjugate by the action of
Aut R5 ~ G5, we obtain five involutions o = o4, ..., 05.
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Theorem A. The automorphism group of R_1g is generated by Aut Rs and o.
Moreover, it is isomorphic to the semi-direct product of the amalgam of five involu-
tions (o1) * -+ - x (o5) by Gs.

The double cover of Rs with branch the union of ten lines is a K3 surface with 15
nodes. The minimal resolution Xy is a double cover of R_1y. (The suffix “4” denotes
the discriminant of rank 2 transcendental lattice of the K3 surface.) Hence R_y,
with the strict transform of ten lines, is a Coble-Enriques surface in the following

sense.

Definition A smooth algebraic surface S with a boundary divisor B = LI"B; is a
Coble-Enriques surface of index m if S is the a quotient of a smooth K3 surface X
by an involution € whose fixed point locus is the disjoint union of m smooth rational
curves and if B is the branch divisor.

The boundary components B;’s are all smooth rational curves with self intersection
number (B?) = —4. When index m = 0, S is nothing but an Enriques surface. Those
with positive index are classified by Dolgachev-Zhang [7]. The maximum index is
m = 10 and the rational surface R_;y above is the unique Coble-Enriques surface of

maximum index.

Example (1) Let B C P2 be an (irreducible) plane sextic with ten nodes and R_;
the blow-up of P? at the ten nodes. Then R_; with the strict transform B of B is
a Coble-Enriques surface of index one.

(2) Let B be the union of six lines in P2, Then the blow-up R_g of P? at the 15
intersection points, with the strict transform B of B, is a Coble-Enriques surface of

index six.

Returning to Theorem A, let L ~ Z!° be the orthogonal complement of the
boundary components Bj,--- , Bjo in the Picard lattice Pic R_jy ~ Z*°. The 15
exceptional curves of the blowing up R_i;g — Rjs define 15 roots, that is, divisor
classes of self intersection number —2, in L. The five involutions o1, ..., 05 also
define five roots in L. These 20 roots have the same graph as the Enriques surface
S of type VII in Kondo [10]. Theorem A is proved in an analogous way to his proof
of Aut S ~ Gs.

Remark Since the Picard lattice of the covering K3 surface X, is 2-elementary;,
Aut X, is the central extension of Aut R_;y by the covering involution. Hence the
latter half of Theorem A also follows from Vinberg [22]. Our proof is the one which
eliminates the K3 surface X, and Torelli type theorem from his.

Let S be an Enriques surface which has semi-symplectic action of both the alter-
nating group 2 of degree six and the group 32Dy of order 72 and are found in [15]
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and [19]. (An automorphism of an Emriques surface S is semi-symplectic if it acts
trivially on H°(Og(2Ks)) >~ C.) The covering K3 surface of S is the one found by
Keum-Oguiso-Zhang [9] using the Leech lattice and Leech roots.

Theorem B. S is isomorphic to the logarithmic transform of the Hesse elliptic

surface
Ro:=Blg P*--. = P (wg: 21 :29) = (23 + 2% + 23 : 3wpwy2)

at the two fibers over (14 /3 : 1) (with multiplicity two).
By a similar argument with the proof of Theorem A, we have

Theorem C. The semi-symplectic automorphism group of S is isomorphic to the
amalgam (32 Dg) * Ag over 32C}.

The Enriques surface S has 40 roots of P!’s and involutions. It is interesting to
observe that the graph of these 40 roots are the same as that of Example (2). When
the six lines tangent to the same conic, the Coble-Eniques surface R_g of index six
is the projection of a Kummer quartic surface from one of 16 nodes, say ng. The
boundary B = Z? B; is the image of six tropes passing through ngy. In this case,
the 40 roots of R_g consists of 15 PY’s over the remaining 15 nodes nq,...,ns, 15
involutions of Hutchinson-Gopel type ([16]) and the images of 10 tropes which does
not pass through ny.
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