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1. INTRODUCTION

Kahler-Einstein st EDHFAEMEE K ZEW L IZN 5 —HED GIT ZEMEDIE
fEEIZ OV TOFHE (Yau-Tian-Donaldson FHH) ICBHT 2 ESR &, &AL D Chen-
Donaldson-Sun [3], [4], [5], [6], Tian [30], Székelyhidi [28] T & % fEHIZ DV THRE
TRZEDBABOFEHNTHS. HoFLIFLLTD@ED TH 5. Kihler-Einstein &
BEOHFEMEE ¢p(M) 2’8, 0, EO=2D0HE0T0H), ADEAF Aubin &
Yau 73, 0 DEAIE Yau 251970 FERBE L ICESFICEOGFEELZIEAL, Bk 72,
ci(M) D’IE, T7bb M » Fano ZIREDH G, WL D0OEERH SN T
7-. FE® Yau-Tian-Donaldson ¥#13 K ZEWENS—>DEHERFEH 2525 TH
2)EVHTFHTHSL, ZOTFHOHO FLITRDEY TH 5.

- Kahler-Einstein sFEDHFENEIZ Monge-Ampere ATER & FEIX N 2 IERER
W iRz B MEIREIN S, ZoFBRADOMBILHTA K-energy & FEIXIL 5N
BRSNS TH 2. ZOPESZ Kihler SFEEEOZERMOMBEKTH 5. 2 DI
BEE S B D ZZRIDEERE T oo ICFHBL, HOIXEEREETH 2 720 DEMAD
BonniZzo L Z2ICRERR 2R O>EEZLNS.

- K ZEMNE Fano S8R (F 7213 —MITRBZRIE) M HVINEELOIAL DD
BEEEEMO C-ERICX DELT 3 L &g, BILL 7ZBED Donaldson-Futaki
AEBEHIEINE D ODOFETERERZERT 52 BUEWHIEE) . ThbbaTD
IBALICH L, Donaldson-Futaki AEEDIEEATH 5 Z &, Donaldson-Futaki =
BOIC%BDIF M B CEHATHRINDL L, P KELEEDEETDH S,

<BYL U 7= MR I E 22RO Fubini-Study #lE% GlR TIUXREEICRD,
Kahler SHE2A OB OMRRE & K232 £ 23 TE %, Dnaldson-Futaki NEED
Bk & DHERE T O K-energy DIR2FEV2RIAL T35, T4bb, ETH
2 E\) T &R K-energy DMERIZEICE T +oo ICHBLTWA I EZELT
W3,

* Yau-Tian-Donaldson F48(% Fano ZkEDREIFLRIL & L TD Kéhler 5HED
fEFRSED A % BiuE, Kahler sHE2F 0 22/ 0 R E T O K-energy DR % %
WH D, EEEEZHETELEW) T EZFIRL TS,

CDOFEAD 7 7 —F L LT Donaldson ¥ divisor IZ#3> T cone angle %
Ff> Kahler-Einstein stE & WHIBEEZEA L7, cone-angle Z/37 X —F —&F
% Monge-Ampere HERDERE Z, /NI cone angle THIFEEL, ZOfEz
cone angle 2 ¥ THER T & 1T 6 227 Kihler-Einstein s EVSFEET 5 L)
FH#T, K Z%E7% 513 Kahler-Einstein i1 82252 E ZAEHT 2 2 LI TE L LER
72, 2012 4EFKIZ, Chen-Donaldson-Sun & Tian 23ZIXFERFIC Z D575 T Yau-Tian-
Donaldson PR % HEEMIHER L 72 ERE L2, TDHIETIX partial CV-estimate
LIEIEN D Bergman D T4 5 DFHliAHE & 72 %, divisor 123> T cone angle 2 HF
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> Kéhler-Einstein 1 &% divisor D/} Tl Kahler-Einstein sFE2TH D, ZD7=dIC
Gromov-Hausdorff JX?R2% open dense set =T C*° IR & 72 ) Z OFLR D A BEIC 72
5., ZDZEPEIEDLILT partial CO-estimate 23HJEE & 72 o7z, Z DR ETIXIH
KD Aubin @ continuity method Tl partial C%-estimate IXHEEE & % 2 STz,
L7 L, 2013 4 10 HIT G.Székelyhidi 23[HD Aubin @ continuity method T
partial C%-estimate 2SAJRECTH S Z L&A L7z, Z4UC X D, Yau-Tian-Donaldson
TR X Bl FEHRAREIC e o /e E FIRI N T 5, KETDAEIEZ DL E OB % 3
BHZ A 5.

728, Kahler-Einstein st EDHFEREIZ\{ DD EL 2 ICHEN—RILE 1
5, T, KEZEETHOWONIAEREIT VWA VWA LRI, —Bikan
ROz ZNTCEMGEEIZRAT. lz21E, ZORMEIXMEmEZIERE (M, L) I
WL, Vw2 (L) 2RF T 2 Kihler BT, A8 7 —MME-EL22DDOVEET
L) BRI —LE N, F IO TEZ S50 GIT OEHRD ST
BLBRW, ZORA T —@E—E Kahler 5rEDFIERME, 7% D% 25—
extremal Kéhler it EDFEIEREIZRBILTH 5.

2. KAHLER-EINSTEIN B DEFEERE

M Zavy VEESRE, g% M O Kahler 5t E T2, T2bb, 21, ,2m
% JRRTIERIEERRE & L

(1) w=+v-1 Z g5 dz; N\ dz;

ij=1

EEL L wid M ORPFTEREORD 5T X 6w RKIEN R 2 XgoETtdh),
I

(1) 179 (9;5) FEHTIEEIL E — F 751 ;
(2) gi; BT O BBk |
(3) dw=0%2A7THDLT S,

ZDLE, wy % gD Kéhler B3, F7—2LH8 [w,] Z Kéhler H &\, 7,
Kahler st B2 FOEHRLIkIEZ Kahler ZIRME 9.
Kéahler & g 12X L,
82
(2) Ric(g);; == _8zi8§j log det(gyz)
ICEDEZSND 20D T V)L Ric(g);; % Ricei BRERE W),
FREE O BE (Chern-Weil #REE) 12 X #UXEE 1 Chern 28 ¢y (M) 1%

T e
(3) Py = 5 Z.]Z::I Ric(g);; dz; NdZ; = ——57;-88 log det(g;7)
Wk ORFESIND, ZOEKT pg & Ricci el d, 581 Chern e & B IFEIZN 5.
—MIZ, HDEER N ITHL

(4) Ric(g)ij =A 9i3
2%
() 2Py = Awy

L% % EE, gl Kihler-Einstein gl & &EMFIEN 5. ZUIVBICIZE GO
Klch72 5.



Ricci IR IEOMLEIERIZE D AETH L6 A=1, 0, —1 EIEHILL TRV,
9, A=1%&¢L K9, ZOLE

(6) c1(M) = [pg] = 1/27[wg]
FIED (1,1) ETH5., 2FhH K, 1 ample, F7:1& M 1 Fano £k TH 5.

DEazEEtds e, XROHEHTH?S,
)\ =1 @ Kahler-Einstein 5t E %2> = M ¥ Fano K TH 5. 777L M »°
Fano & 1% ¢ (Ky/) = (M) > 0 DD SE2W% 5 9.

BEE «—— [TV D ITOD?

A=—1DLELEN=0DELZRBRFEATHS., T4bb,

A= —1 @ Kihler-Einstein it &% > < ¢;(M) < 0.
A=0 @ Kihler-Einstein & (Calabi-Yau il &) 22 < (M) =0.

DRI N TS, ERDl) —= 3 EE0 b HHATH S, <= F A=-1D
A3 Aubin [1] & Yau [33], [34] 2MHIZIZ, A =0 OHAIF Yau [33], [34] 28
ZNEN 1970 FERBPLICHEAZ 5272, TN BEREICOVTIE (M) <0
c1(M) = 0 BAHTIZAS IS M D DV Twuawn 2 EITHERL £ 9.

A=1 DEEE, WOPDEEPHLNTED, €>57T (M) > 0 LT 5 5
DAHMIZE % £HT 22> &, Kéhler-Einstein sl 2 DFEIFIRTHIZTER LI LD
HMoNTWS, ZOHAWIE Kihler-Einstein at& (b o & —RIZA D 7 —HFE—E
Kahler M) %> Kihler ZIRAEICE W TXIERI R Y M VBEED 2 THE Lie
B h(M) 3 reductive TH 5 L9 HE (MEBDOEM [19) TH 5.

b ) =20l h(M) DI f: h(M) — CELEL, b L M 2% Kihler-Einstein
RIEZROLOIE =005 W) EEORR (14]) THs. 2D f:H(M)—C
WBERDEHIICLTERINS, 5, M X Fano ZIREEREL, on(M) >0 TbH5
DT, Kihler TBA w % w € 2me; (M) L7825 K9 ICHA, Kéhler-Einstein it&7%3
bLEEL, w BZD Kihler EBRTH 2% 5 w e 2rei (M) 2 AT 6, TOHL
D IR TH S, 722D Ricci TBR p(w) b er(M) 2R&ET 5. iE->T, H3
WO RERE F e C®(M) BEFEL,

2

(7) 27p(w) = w + iO0F

ERBLODEET A, F DBERICHE A L L w D Kahler-Einstein 51 &® Kahler
R THa I & LIZAETH 225, FERISEAT Kihler 3813 Kahler-Einstein &1
BTEIZREL VO T—HRICIE F IFERTIE R\, ZDEE, Xe h(M) WXL

(8) £(X) = /M XF o™

kD fREHETS. ZZWm=dimcM TH5. IO flFwe2re (M) ZiEA
TEZRINTWVEY, ElF w e 2mei (M) ODEY FIck 67\ ([14]) . LZd>TH
RLRE M O HORBHOEHTAZETH 5. HOAEEFD Lie B2 H(M) TH
55 f 1% Lie BROEREIC 2 5.



3. MONGE-AMPERE SRR

Kahler-Einstein s &0 FET 5 2 £ Z25EHT 5 2 £ 1R D Monge-Ampere /712
ADBOFEZFHT 2HIIFEINS, F G507 Kahler 3t (g5) & F €
C®(M) lZxf L

62
det(g;7)
0%
(95 + 5,573) > O

BT o€ C°(M) DREDODFEZIEHY L. 20 Fld  x=1D8a, A (7)1
LFODEFSLDTH 5.

COHERDOBEMEEL7-DIC dime M =1 DEZIEERLTALY). ZOEA,
T

(10) 14+ Ap = e ¥FF
L%, fliHEDD F=08T5%L
(11) 1+ Ap=e¥
&k 5,

BIZA=0LtT5L
(12) l1+Ap=1

L7 BDT, p=const W—ENHELELS,

A=-1 LT3 LBAMEREZHAGE ERIEYD =0 B—BNRL 222 L2
"5,

LL, A=1 &9 2RMERBIZFEZT, M A0\, EEE, HEX (10)
TA=1¢L%GE, 2 RUKALDES»ZEBRF OHL, EDLH%k FITH
LCEEZFFOD, 3L WIETH 5.

HIET Tl Rz X 9 I, EEEEDDH 2 D THER (9) MBI v, R
5 Es D+ 35MED3 Siu, Nadel, Tian ZFIZ k> TSN T30, +9%ETH->T
BT,

Yau-Tian-Donaldson PRI NE+ &G K-ZE®ETHD L) FERTH S,
PIF, EEET K-ZEMIZOWTEL,

4. DONALDSON-FUTAKI INVARIANT AND K-STABLITY

The obstructions by Matsushima and Futaki vanish when §(M) = 0. For this
reason it was expected that a Kéahler-Einstein metric would exist if (M) = 0.
But this expectation was disproved by Tian [29] by the following method. Tian
introduced the notion of K-stability and showed that if a Fano manifold M admits
a Kéhler-Einstein metric then M is K-stable. He also showed a deformation of
the Mukai-Umemura manifold is not K-stable and have no non-zero holomorphic
vector field. Note that the Mukai-Umemura manifold itself has a Kéahler-Einstein
metric, and some deformations also have Kéhler-Einstein metrics (see [11], and also
[31]).

Simply stated, K-stability is a stability in the sense of geometric invariant theory
(GIT) defined by the numerical criterion using the invariant f as the GIT weight.
Here we use f to be the one generalized for singular varieties. Precisely, Tian [29]



used the generalized Futaki invariant defined by Ding and Tian [7] for normal Fano
varieties, and Donaldson [9] used the one generalized for general schemes which is
defined as follows.

Let Ly — M, be an ample line bundle over a projective scheme M, with an
equivariant C*-action. Put

dy, = dim H°(My, LY)

and let wy be the weight of the C*-action on HO(M07LIS). Then d; and w; are
polynomials in k of degree n and n + 1 respectively. We expand
(13) Dk o+ Pk~ + Pk 2+

kdy
with respect to k~!. Note that ,37’1 — ‘g—g is the Chow weight where ay and by are
the leading terms of dj and wy in k.

Proposition 4.1 ([9]). If My is smooth Fano manifold and L = K for some
r >0, then

(14) B =-Cf(X)

where C is a positive constant depending only on L and X is the infinitestmal
generator of the C*-action.

Definition 4.2. A test configuration of a Fano manifold M s a C*-equavariant
flat family = : M — C of schemes embedded in CPN x C for some large N such
that

e M is invariant under a C*-action on CPY x C;

e 7 1(1) = M, and thus 7~ 1(t) is isomorphic to M for any t # 0 because of
the C*-equivariance,

o 7 1(1) = M is embedded in CPN x {1} by K, for some r;

e the central fiber m=1(0) is a normal variety with log terminal singularities.

In this definition C* acts on C as the ordinary multiplication, and therefore the
origin 0 is a fixed point. It follows that M is invariant under the C*-action, and
that we can consider the invariant F} above. In the terminology of Tian [29] a test
configuration is called a special degeneration.

Definition 4.3. For a test configuration M we put DF (M) to be the invariant
—F, of the central fiber My = 7= 1(0). We say a Fano manifold M is K-stable
if DE(M) > 0 for any test configuration and the equality holds if and only if
M=M x C.

DF (M) is called the Donaldson-Futaki invariant. We could use the generalized
Futaki invariant of Ding-Tian in the place of DF (M) because we assume M is
normal. The Yau-Tian-Donaldson conjecture is stated as follows.

Yau-Tian-Donaldson conjecture ([35], [29], [9])
A Fano manifolds M admits a K&hler-Einstein metric if and only if M is K stable.
(Note that there is a convention in which K-stability is referred to K-polystability.)

It was Tian [29] who first studied this conjecture systematically. The Fubini-Study
metric restricted to M; degenerates as t — 0 and the limit is considered to be an in-
finity of the space of Kahler forms on M. The asymptotic behavior of the K-energy



is given by DF(M). The Yau-Tian-Donaldson conjecture says the properness of
the K-energy (or Ding’s functional) is equivalent to K-stability.

As mentioned above Tian used the generalized Futaki invariant of Ding-Tian
assuming the central fiber is normal. But in general degeneration the central fiber
can be non-normal. In [9] Donaldson re-formulated the Futaki invariant in the
form of the Donaldson-Futaki invariant DF'(M), and defined the test configurations
without assuming the central fiber being normal. However Li and Xu [18] proved,
using the minimal model program with scaling, that the test configuration can be
modified so that the central fiber is a normal variety with log terminal singularities
and that the Donaldson-Futaki invariant does not increase. Thus we may define
K-stability only using the test configurations with normal central fiber with log
terminal singularities.

5. KAHLER-EINSTEIN METRICS WITH CONE ANGLE ALONG A DIVISOR

Let M be compact Kéhler manifold and D be a smooth divisor. Suppose D is
written as the zero set {z! = 0} for local coordinates 2!, -, 2™. The local model
of a Kahler metric with cone angle 27 along D with 0 < 8 < 1 is expressed as
follows. We consider the region B C C of radius € with the argument 0 < argz < 27
onto the region C' C C of redius ¢ with the argument 0 < argw < 275. We take
a neighborhood U of the origin in C™~!. Let f be the map of B x U onto C x U
given by

(w722’ T 7zm) - f(z> = ((Zl)ﬁvzza T 7Zm>'
The local model of the Kéhler metric with cone angle 27w is given by the pull-back
by f of the flat metric on C' x U. Thus the Kahler form is expressed as

Fridw Adw+ Y idz? Adz = B2t PP Vide! Adzt 4+ ide? A dF
j=1 =2

Definition 5.1. A Kadahler form with cone angle 2n along D with 0 < 3 <1 is by
definition a Kdhler form w defined on M\D which is uniformly equivalent to the
local model

m
Weone = ]21|2(ﬁ"1)idzl Adzt + Zidzj A dZ
=2
on a neighborhood V where D is expressed as DNV = {z' = 0}, that is, there exist
positive constants Cy and Cy such that

C’lwcone Sw< CQWcone~
Note that if the cone angle is 27 then the Kahler metric is smooth.

Definition 5.2. For a Kdhler form w with a cone angle along a divisor D we define
the Ricci current Ric(w) is defined by

(15) Ric(w) = —id0 log w™

where 90 is taken as a distribution derivative.

Lemma 5.3. Let Ric(w) denote the Ricci form of w on M — D. Then we have
Ric(w) = Ric(w) + 27(1 — B)[D]

as currents.



Proof. This follows from the Poincaré-Lelong equation i/27 99 log |21|> = [D]. O

Next we assume that M is Fano and that the divisor D is smooth with [D] =
Ac1 (M) for some positive integer A. Note that it is not clear if we can take A = 1.

Definition 5.4. A Kdhler form w with cone angle 2m8 along a divisor D such that
[w] = 2mc1 (M) is said to be a Kdhler-Einstein metric if and only if

(16) Ric(w) = pw + 27(1 — B)[D).
Remark 5.5. We have p=1— (1 — ).

Proof. The right hand side of (16) represents 2w (u+ (1 — 5)\)ci (M), Since the left
side of (16) represents ¢1(M) we obtain =1 — (1 — ). O

Put
E ={B € (0,1] | (16) has a solution}.
We employ the continuity method with respect to the parameter 8. Thus if we can
show
(i) FE is not empty.
(ii) FE is open.
(iii) F is closed if M is K-stable.

we obtain the proof of the Yau-Tian-Donaldson conjecture since f = 1 gives the
desired smooth Kahler-Einstein metric on M. The step (i) was obtained by Brendle
[2], Jeffres-Mazzeo-Rubinstein [16] and Chen-Donaldson-Sun [6]. The step (ii) was
shown by Donaldson [12] and Song-Wang [24]. The step (iii) was obtained by
Chen-Donaldson-Sun [3], [4], [5], [6]. and Tian [30].

6. PROOF OF THE CLOSENESS.

In this section we outline the proof of the closeness of the set E in the previous
section. Let wy be a smooth Kahler form with [wg] = 2mc1 (M). Put

H={pecC®M)|wy+1i09p >0in M}.
For 8 € (0,1] we also put
Hp = {p € C°(M\D) | wo + 89y is a Kahler form of cone angle 273 along D}.
An element of ﬁg is typically of the form ¢ + e|s[iﬁ where p € H, s € H*(M, D))
with (s) = D, h is a smooth metric of D and € > 0.
Lemma 6.1. For pg € ’ﬁg we put wg = wo +100pg. If we define hg by
Ric(wg) = uwg + (1 — B)27[D] + i00hg

then we have
m

2 “s
hg = hwe — (1= B)log |ls|lh, —log — — ues
where the first Chern form c1(hg) is equal to wo and Ric(wp) — wo = 100he, -

Corollary 6.2. The solution g € ﬁg of (16) satisfies the equation
wp'

(1-8)"

(17) WM = g~ HPaThe 5
IE I

¥B



We consider the log test configuration 7 : (M, D) — C of the pair (M, D), and
wish to define the log Donaldson-Futaki invariant DF' (M, D) with cone angle 270.
For this purpose we first define an obstruction to the existence of a Kahler-Eisntein
metric of cone angle 273 along D, which is given in the following lemma.

Lemma 6.3 ([17]). Let X be a holomorphic vector field on (My, Do) such that
its flow leaves Do invariant. Choose a smooth function ux on Mo\Dgy so that
i(X)wg = —0ux. We define fg(X) by

fa(X) = /M ux (Ric(wg) —wg) A wgb_l —(1-7) <)\ /M uxwg' — 27T/D umwgl_1>

_ /M ux (Ric(wg) — pwg + (1 — B)2x(D]) Awl™.

Then
(1) fg is independent of pg € ?/-[\5.
(2) If there is a weak Kdhler-Einstein metric of cone angle 3 in the sense of [?]
(meaning the metric wg satisfies the equation (77) on the regular part) then

fs = 0.

We define the log Donaldson-Futaki invariant DFg(M, D) of the test configura-
tion M, D to be the log Futaki invariant fg(X) of the central fiber (M, Dy). If we
denote by F;(Mp) and Fj(Dy) the expansion of (13) for the central fiber My and
Dy, then it is easy to show

(18)  DE(M.D) = ~F(Mo) ~ (1 - 8) " (Fy(Mp) — Fo(Do))

up to a multiple positive constant.

Now the proof of the closeness of F is divided into the following three steps.
Step 1. ([27]) For any test configuration of pair (M, D) the log DFs(M,D) > 0
for the cone angle 8 = 0. In other words, any test configuration of pair (M, D) is
log K-semistable for cone angle g = 0.

Step 2. This step is the hardest part, and most of the efforts in [?], [?], [?] and [30]
are devoted to this part. Take a sequence (3; € E converging to [, and suppose
that S ¢ E. Then one can show the followng.
(a) The Gromov-Hausdorff limit (Mo, doo, Do) of the sequence (M, wg,, D) is
in fact a limit of algebraic varieties, and M, # M.
(b) There is a test configuration (M, D) — C with the central fiber (Mg, Dg) =
(M, D).
(¢) The Gromov-Hausdorff limit (M., Do), which is the central fiber (Mg, Do)
of (M, D), has a weak conical Ké&hler-Einstein metric with cone angle =
Bso, and thus

DFg _(M,D) = fz. (Mo, Do) = 0.

Step 3. Recall that the log DF DFg(M,D) is an affine function in B. Since
DFg(M,D) > 0 for § = 0 by Step 1 and DFg(M,D) = 0 for f = [ by Step
2 we obtain DFg(M,D) < 0 for § = 1. But since DF3(M,D) = DF(M) for
B =1 and we assume K-stablity we must have DFg(M,D) > 0 for § = 1. Thus
we obtain DFg(M,D) = 0 for f = 1. But by the assumption that M is K-stable
DFg(M,D) =0 for § =1 occurs only if M = M x C. But My, # M and this does
not occur. This is a contradiction and completes the closed ness of E.
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