### 少量データを用いた 音声合成におけるボコーダの一考察

奈良女子大学 生活情報通信科学コース 髙田研究室



## 少量の音声から 学習データの拡張

- ・少量の音声データの場合でも高性能な音声認識システムを 作成
- ・合成音声の利用で、認識できなかった単語学習の追加

### 音声認識システムの問題

通常の音声認識システムは...

- 学習に大量の音声データ+テキストデータが必要
- 少量の音声データだと認識率が低い



高性能な音声認識システムを作ろうとすると 音声データだけで10時間以上のものが 必要になることも...

#### 目標

- ・合成音声を人間の音声(自然音 声)の代わりに使用
- 少量学習データから合成音声を生成
- 最適な音声合成ボコーダを調査
- 自然音声との精度を比較

### 音声生成手順

TTS (テキストから音声を作成するツール)をもとに開発

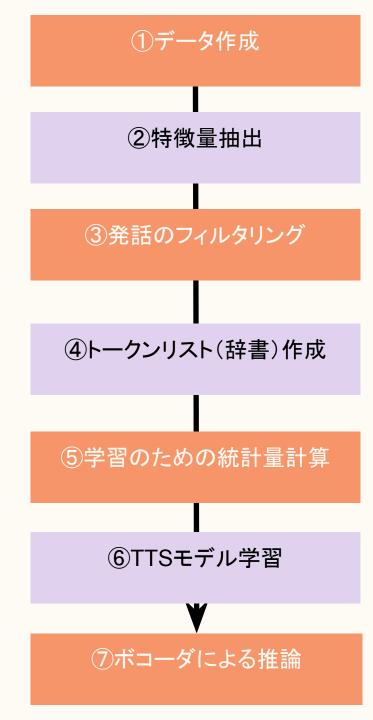
手順1~6:Tacotron2

- 注意機構を含むEncoder-Decoderモデル
- LSTMによる自己回帰
- 実装:ESPnet2を使用

手順7:ボコーダ

ボコーダとは...

音声合成で学習した特徴量から音声波形を生成する部分 音声合成の品質や速度を決める重要な部分



### 使用ボコーダ

- Griffin-Lim
  - 非DNNモデル
  - 振り幅スペクトログラムを元に波形を生成
- Parallel WaveGan
  - Parallel(並列→高速)+WaveNet(自己回帰型)+GAN
  - WaveNetと同等以上の品質+並列処理による高速処理

### 使用ボコーダ

#### Hifi-Gan

- Generator に Multi-Receptive Field (MRF) fusion を導入
- 異なる受容野を用いた多数の residual block の和として音声波形を生成

#### VITS

- E2E-TTS
- 敵対的学習の中で正規化フローと変分推論を利用
- 確率的継続長予測器によって、多様なリズムの音声を生成
- GlowTTSエンコーダ+Hifi-GANボコーダ

## 実験①概要

▶単一話者での転移学習を実施

#### データセット

- つくよみちゃんコーパス(100文, 10分58秒)
- ⇒ 固有名詞や難しい熟語が多い(例:セーヌ川、橋脚等)
  - ITAコーパス(100文, 10分32秒)
- ⇒日常会話が多い

#### 事前学習済みモデル

JSUTコーパス(7696文、10時間)で学習したモデル

# 実験①概要

▶単一話者での転移学習を実施

| モデル                        | Epooh数 | Batch bins | Vocoderのfine-tuning有<br>無 |
|----------------------------|--------|------------|---------------------------|
| Tacotron2+Griffin-Lim      | 1000   | 3750000    | なし(事前学習済みを使<br>用)         |
| Tacotron2+ParallelWave Gan | 1000   | 3750000    | なし(事前学習済みを使<br>用)         |
| Tacotron2+Hifi-Gan         | 1000   | 3750000    | なし(事前学習済みを使<br>用)         |
| VITS                       | 50     | 1000000    | あり                        |

### 実験②評価手法

▶モデルの客観評価手法

MCD(メルケプストラム歪み):MCEPのユークリッド距離から計算

$$MCD = \frac{10\sqrt{2}}{\ln 10} \cdot \left( \sum_{i=1}^{n} \sqrt{(MCEP_i - \widehat{MCEP_i})^2} \right)$$

Log F0 RMSE(二乗平均平方根誤差):対数をとったF0配列のRMSE

$$\label{eq:logF0RMSE} LogF0RMSE = \sqrt{\frac{1}{n} \cdot \sum_{i}^{n} (\log F\theta_{i} - \log \hat{F\theta_{i}})^{2}}$$

WER(単語誤り率):音声認識器Whisperで認識した単語の誤り率を計算

音声認識器Whisper

68万時間の多言語・マルチタスク教師付きデータで学習させた音声認識モデルエンドツーエンドをベースとしたアーキテクチャ

## 結果

- MCD, LogF0RMSE, WER を算出
- 各40個の文章を推論し、音声の平均 ±95%信頼区間を求めた

#### つくよみちゃんコーパス

| モデル             | MCD        | LogF0RMSE | WER*100 |
|-----------------|------------|-----------|---------|
| Griffin-Lim     | 11.64±0.99 | 0.22±0.05 | 30.42   |
| ParallelWaveGan | 8.07±0.58  | 0.19±0.03 | 27.15   |
| Hifi-Gan        | 8.39±0.45  | 0.21±0.04 | 33.39   |
| VITS            | 3.78±0.05  | 2.17±0.06 | 10.14   |
| オリジナル音声         | _          | _         | 5.29    |

#### ITAコーパス

| モデル             | MCD          | LogFORMSE | WER*100 |
|-----------------|--------------|-----------|---------|
| Griffin-Lim     | 11.41±0.87   | 0.34±0.08 | 26.56   |
| ParallelWaveGan | 7.96±0.52    | 0.21±0.05 | 24.54   |
| Hifi-Gan        | 8.15±0.42    | 0.25±0.06 | 26.41   |
| VITS            | 3.62±0.05    | 2.18±0.10 | 7.21    |
| オリジナル音声         | <del>_</del> | _         | 4.66    |

### 結果(つくよみver)

#### **MCD**

- VITSが一番値が小さい
- VITS平均値 \* 2<他モデル</li>

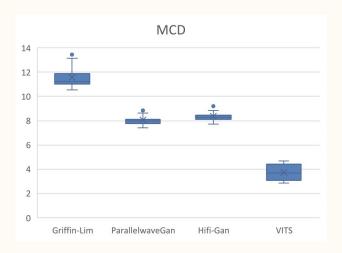
#### Log\_F0 RMSE

- VITSの平均値,分散が一番大きい
- PWGが最も小さい
- Griffin-Lim, PWG, Hifi-Ganの差はほとんど無い



#### 精度

E2Eモデル>非E2Eモデル





### WERの結果の考察

MCD: Griffin-Lim > Hifi-GAN > PWG > VITS

WER: <u>Hifi-GAN > Griffin-Lim</u> > PWG > VITS

#### つくよみちゃんコーパス

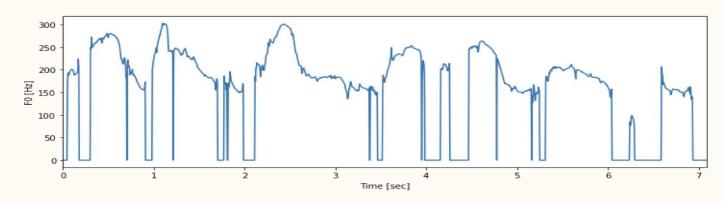
| モデル       | Griffin-Lim | PWG       | Hifi-GAN  | VITS      | 自然音声 |
|-----------|-------------|-----------|-----------|-----------|------|
| MCD       | 11.64±0.99  | 8.07±0.58 | 8.39±0.45 | 3.78±0.05 | -    |
| WER * 100 | 30.42       | 27.15     | 33.39     | 10.14     | 5.29 |

#### ITAコーパス

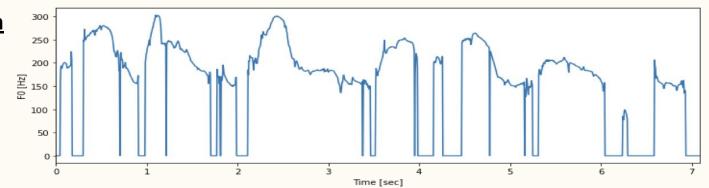
| モデル       | Griffin-Lim | PWG       | Hifi-GAN  | VITS      | 自然音声 |
|-----------|-------------|-----------|-----------|-----------|------|
| MCD       | 11.41±0.87  | 7.96±0.52 | 8.15±0.42 | 3.62±0.05 | -    |
| WER * 100 | 26.56       | 24.54     | 27.41     | 7.21      | 4.66 |

### GANの比較の考察(音声波形)

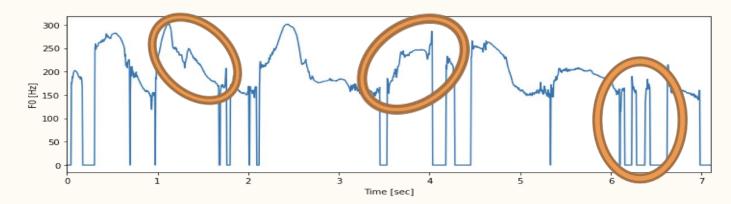
#### ▶自然音声



#### **▶**ParallelWaveGan



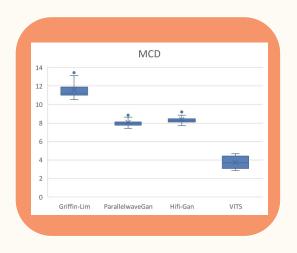
#### ►Hifi-GAN



### 合成音声で認識率が悪い単語の特徴

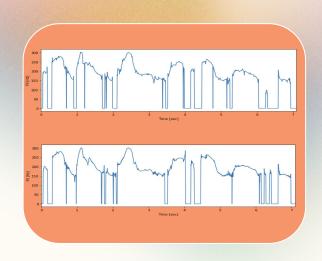
- ▶全ての合成音声モデルで認識率が悪い
  - 母音が続く(例: 王(おう)、降雨(こうう)等)→**音が消えやすい**
  - 「ら」行(例:拾い→ひどい、狙う→ねがう等)→**音が濁りやすい**
- ▶Tacotron2を使用したモデル(3個)で認識率が悪い
  - 半音を含む(例:ウェイトレス→レイトレス、山脈→さんらく等)→音が単純化する
- ▶Griffin-Limボコーダ
  - 「ち」から始まる(例:長母音(ちょうぼいん)、鎮痛(ちんつう)等)→**音が濁りやすい**
  - ○「む」→「ん」に変化しやすい
- ▶Hifi-GANボコーダ
  - 濁音(例: 軍→うん、擬古→いこ)→音が単純化する
  - 中間音が入る(岩壁→がんぺいき、化粧→けいしょう等)→音が間延びする
- ▶ParallelWaveGanボコーダ
  - 濁音が続く(例:お辞儀(おじぎ)、語尾(ごび)など)→発音が不明瞭になりやすい

### まとめ



MCD:Griffin-Lim > Hifi-GAN > PWG > VITS

WER:Hifi-GAN > Griffin-Lim > PWG > VITS



E2Eモデルの精度 >> 非E2Eモデルの精度 MCDの評価 *≠* 音声認識の精度 発音が明瞭 = 認識率が高い