# Similarity Searching Techniques in Content-based Audio Retrieval via Hashing

### Yi Yu, Masami Takata, and Kazuki Joe

{yuyi, takata, joe}@ics.nara-wu.ac.jp Graduate School of Humanity and Science Nara Women's University





# Outline

- Background and motivation
- > Short review -- ANN, LSH and E<sup>2</sup>LSH
- Proposed framework
- Experiments and results
- Conclusion and future work



# **Content-based Audio Retrieval**

Retrieval based on spectral similarity is difficult

- High dimensionality of features
- Complex computation
- Large database size
- Scalable retrieval capabilities need to be exploited
  - Audio indexing structures
  - Partial sequences comparison



# Motivation

- Depend on:
  - Mapping features to integer values by heuristics
  - Reducing pairwise comparisons by hashing
- > Challenges:
  - Characterize acoustic objects with relevant spectral features.
  - Represent audio features so that they can be indexed.
  - Locate desired music segments with a given query in acceptable time.



# Outline

Introduction and motivation
Short review -- ANN, LSH and E<sup>2</sup>LSH
Proposed framework
Experiments and results
Conclusion and future work



# Approximate Nearest Neighbor(ANN)

- > Given -- a set P of n points in  $\mathbb{R}^d$  (d dimension) and a slackness parameter  $\varepsilon > 0$
- Goal -- with a query point q whose nearest neighbor in P is a, find one/all points p in P, satisfying

 $D(p,q) \le c D(q,a), c=1+\varepsilon$ 

Points in the shadowed ring are desired.





# Locality-Sensitive Hashing (LSH)

## > Hash function:

- A pseudo random hash value is obtained
- Hash value is nearly uniformly distributed.
- LSH: hash function is required to maintain the similarity. For any pair of points p, q,
  - Hash function h, generate h(p), h(q)
  - Pr[h(p)=h(q)] is "high" if p is "close" to q
  - Pr[h(p)=h(q)] is "low" if p is"far" from q





# Exact Euclidian LSH (E<sup>2</sup>LSH)

- E<sup>2</sup>LSH performs locality-sensitive dimension reduction by p-stable distribution
  - A distribution D over R is called p-stable, if
    - (i) for any *n* real numbers  $V = (v_1, v_2, ..., v_n)^T$
    - (ii) i.i.d. random variables  $X = (x_1, x_2, ..., x_n)$  and x with distribution *D*

(iii) there exists  $p, y = (\sum_{i} |v_i|^p)^{1/p} x$  and  $f_V(X) = \sum_{i=1}^{n} v_i x_i$  have the same distribution.

- Dimension compression  $X \rightarrow f_V(X)$ 



# Outline

Introduction and motivation
Short review -- ANN, LSH and E<sup>2</sup>LSH
Proposed framework
Experiments and results
Conclusion and future work



## **Problem Definition**

- Match acoustic sequences without comparing a query to each object in the database.
  - A corpus of *n* musical reference pieces are represented by frames  $R = \{r_{i,i} : r_{i,i} \in R_i, 1 \le i \le n, 1 \le j \le R_i \}$

 $-r_{i,j}$  --  $j^{th}$  spectral feature of  $i^{th}$  reference melody in a highdimension space

- A query sequence <u>q1,q2,...,q0</u> filters some resemblances by E<sup>2</sup>LSH/LSH-based ANN.
- Resembled features are reorganized and compared by DP/Sparse DP.



# **Retrieval Framework**

### > Task:

- Take a fragment of the query song as input
- Perform a content-based similarity retrieval
- Return melodies similar to this query fragment
- Major stages:
  - Metadata organization (red + green)
  - Querying (red + blue)



# Metadata Organization

Basic procedures:

- Audio sequences are divided into small frames
  - STFT is calculated and used as the feature
- Feature mapping and hash value is calculated
  - In LSH (hash value is directly calculated from STFT)
  - In E<sup>2</sup>LSH (STFT is first projected to a lower dimensional sub-feature, hash value is calculated)
- The features are stored in the bucket
- Results -- Convert audio features into "indexable" items.



## Example: a Hash Instance

- Original feature (q<sub>0</sub>, r<sub>0</sub>), Locality sensitive mapping (q, r), Per-dimension quantification, Hash calculation [H(r), H(q)]
- Random weight makes hash values of reference melodies almost uniformly distributed.
- If q and r have a short distance
  - They are quantified to same integer sequences
  - & generate same hash value (H(r) = H(q)) with a high probability.



# Parallel Hash Instances

## Necessary condition:

- Each hash instance contains all the features.
- Locality sensitive mapping generates different features & keep similarity

## Parallel lookup:

- Construct L hash instances with random  $g_1, g_2, \dots, g_L$
- With a query feature Q, lookup buckets  $g_1(Q)$ ,  $g_2(Q)$ ...  $g_L(Q)$
- $g_1(Q) U g_2(Q) U \dots U g_L(Q)$  gives total results



# Query Stage I

#### Feature extraction

- Divide the query into overlapped frames
- Calculate STFT for each frame



# Query Stage II

### > Hashing-based ANN:

- Similar frames lie in the same bucket
- However, dissimilar frames also exist (dissimilar frames)
- Approximation allows a significant speedup of the calculation
- > Example(Index with single feature):
  - Assume that q is similar to f1, f2, f3.
    - Lookup hash table 1,  $h_1(q)$  gives query result f1, f3 and f5.
    - Lookup hash table 2,  $h_2(q)$  gives query result f1, f2 and f4.
    - $-\frac{15}{8}$  & f4 are not similar to q and are removed by ANN.
    - Union of indexed results are f1, f2 and f3.

Indexed results are f1, f3, f5



# Query Stage III

### > Find desired target with a sequence of features

- With query sequences  $(q_1, q_2, q_3, q_4, q_5)$  lookup parallel hash tables
  - Matched features belong to 3 reference melodies.
  - They are reorganized in time order.
    - 7 features in the 1<sup>st</sup> melody  $R_1$ , 4 features in the 2<sup>nd</sup> melody  $R_2$ ,
    - 3 features in the  $3^{rd}$  melody  $R_3$ .
  - On this basis, the sequence comparison is performed



# Query Stage IV

- Matched pairs are sparsely distributed over the Dynamic Time Warping (DTW) table.
  - The conventional Dynamic Programming (DP) is not efficient.
- > Our sequence comparison scheme Sparse DP (SDP)
  - Distance calculated in the filtering stage is converted into weights and filled into the DTW table
  - Melody generating the maximal weight path is the best candidate





# Outline

Introduction and motivation
Short review -- ANN, LSH and E<sup>2</sup>LSH
Proposed framework
Experiments and results
Conclusion and future work



# **Experiment Setup**

### System parameters

- 166 reference melodies, each melody: 60s
- A query piece: 8s
- Sampling rate: 22.05KHz
- Frame length: 1024, Frame overlap: 50%
- Hash table size: 128

### > Experiments goal:

- Evaluate performance of avoiding full pairwise comparison
- Compare LSH-DP, LSH-SDP, E<sup>2</sup>LSH-DP, E<sup>2</sup>LSH-SDP
- > Evaluation metric:
  - Matched percentage
  - Computation time
  - Retrieval ratio



Nara Women's University

# Experiments I -- Matched Percentage

Focus on the accuracy of indexing

- Ratio N<sub>rm</sub>/N<sub>mm</sub> is defined as Valid Match Percentage (VMP).
  - N<sub>mm</sub>: Frames of the matched part in the desired reference melody under the conventional DP.
  - N<sub>rm</sub>: Remaining frames of matched part in the desired reference melody after the filtering stage in LSH/E<sup>2</sup>LSH
- A good indexing scheme results in a high VMP.



VMP under different filtering threshold (3 hash tables)

| $^{\delta}$ LSH         | 0.01   | 0.02  | 0.03   | 0.04   | 0.05   |
|-------------------------|--------|-------|--------|--------|--------|
| VMP <sub>LSH</sub>      | 0.133  | 0.255 | 0.400  | 0.537  | 0.669  |
| $\delta_{\text{E2LSH}}$ | 0.0025 | 0.005 | 0.0075 | 0.0100 | 0.0125 |
| VMP <sub>E2LSH</sub>    | 0.123  | 0.240 | 0.363  | 0.472  | 0.573  |

Increasing filtering threshold leads to a high VMP at the cost of more computation.

# **Experiments II -- Computation Time**

- Computation is mainly considered in two aspects:
  - Indexing the features by LSH/E<sup>2</sup>LSH together with ANN
  - Comparing feature sequences

#### Short discussion

- SDP has a very obvious superiority over DP
  - it avoids the calculation of feature distance
  - & its comparison time approaches a steady value, which guarantees the worst retrieval time.
- SDP outperforms DP





Comparison time in DP and SDP under different number of hash tables ( $\delta_{E2LSH}$ =0.0075) or different filtering threshold  $\delta$  (3 hash tables) 22

# Experiments II -- Computation Time

- All the queries are performed under the different schemes
- Short discussion
  - Conventional DP without hashing takes the longest time
  - E<sup>2</sup>LSH-SDP accelerates retrieval speed by 42.7 times compared with conventional DP.

The total retrieval time consumed under different schemes

| Scheme  | LSH-DP | LSH-SDP | E2LSH-DP | E2LSH-SDP | DP     |
|---------|--------|---------|----------|-----------|--------|
| Time(s) | 258.8  | 213.34  | 139.5    | 83.4      | 3562.2 |



# Experiments III -- Retrieval Ratio

- > A tradeoff is made between retrieval ratio and retrieval time
- With a suitable filtering threshold, the retrieval ratio is high enough while the computation time is controlled

Top-4 retrieval ratio of LSH/E<sup>2</sup>LSH (3 hash tables) under different filtering threshold  $\,\delta$ 

| $\delta_{\rm LSH}$      | 0.01   | 0.02  | 0.03   | 0.04 | 0.05   |
|-------------------------|--------|-------|--------|------|--------|
| LSH-DP                  | 088    | 1     | 1      | 1    | 1      |
| LSH-SDP                 | 0.94   | 1     | 1      | 1    | 1      |
| $\delta_{\text{E2LSH}}$ | 0.0025 | 0.005 | 0.0075 | 0.01 | 0.0125 |
| E <sup>2</sup> LSH-DP   | 0.92   | 0.98  | 1      | 1    | 1      |
| E <sup>2</sup> LSH-SDP  | 0.96   | 1     | 1      | 1    | 1      |



 $\delta_{LSH} = 0.03 \& \delta_{E2LSH} = 0.0075$  are suitable thresholds since a smaller value decreases retrieval ratio while a larger value increases the computation cost.

# Outline

Introduction and motivation
Short review -- ANN, LSH and E<sup>2</sup>LSH
Proposed framework
Experiments and results
Conclusion and future work



# Conclusion and Future Work

- Our contribution
  - Established indexed framework for query-by-content audio retrieval
    - Efficiently organizing audio features(E<sup>2</sup>LSH/LSH)
    - Efficiently avoiding full pair-wise comparison of audio sequences(SDP/DP)
  - Effectiveness of proposed algorithms(E<sup>2</sup>LSH-SDP, E<sup>2</sup>LSH-DP,LSH-DP)
    - Matched Percentage
    - Computation time
    - Retrieval ratio
- Future work
  - Evaluation of scalability of the proposed schemes with a larger database
  - Application of query-by-content audio retrieval in an ubiquitous environment.



lara Women's University





