Measurements of ϕ_1^{eff} from $K_S K_S K_S$, $K_S \pi^0 \pi^0$ and $K^0 \pi^0$

M. Fujikawa The Belle Collaboration

Introduction

 $\Delta t : \text{proper time difference}$ $\Delta m: \text{ mass difference}$ $\eta_{CP}: \text{ CP eigenvalue}$ $\lambda = \frac{q}{p} \frac{A(\overline{B}^0 \to f)}{A(\overline{B}^0 \to f)} \approx \eta_{CP} \text{ e}^{-i2\phi_1}$

• CP Asymmetry

Basic Analysis Procedure

- B extracted with M_{bc} , ΔE $M_{bc} \equiv m_{ES} \equiv \sqrt{E_{beam}^{*2} - p_{B}^{*2}}$, $\Delta E \equiv E_{B}^{*} - E_{beam}^{*}$
- Main Background
 - Continuum event [$e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c)]
 - Separate with Likelihood ratio (L_{s/b}) from event shape

- Signal extraction
 - Multi-dimensions (M_{bc}, Δ E, L_{s/b}, ...)
 - Extended unbinned maximum likelihood fit

Vertex Reconstruction with K_s

- No primary tracks from B vertex
- Extrapolate K_S track to the Interaction Point
- Events are required to have enough SVD hits for vertexing

SVT structure

SVD structure

Vertex Reconstruction with K_s

- <σz> resolution similar to normal modes
- Events without the vertex can still be used to measure A (- C)

The validity is confirmed using the J/ ψ K_S control sample. \Rightarrow B⁰ Lifetime1.503 \pm 0.036 ps \Rightarrow sin2 ϕ_1 =+0.68 \pm 0.06

$B^0 \rightarrow K_S K_S K_S$

Dominated by b→sqq penguin decay

- Theoretically clean (no u quarks in the final state)

• CP even, regardless of any resonant structure [T. Gershon and M. Hazumi, PLB 596 163 (2004)]

$$SM expectation \qquad S = -\sin 2\phi_1 \\ \mathcal{A} = \mathbf{0}$$

$B^{0} \rightarrow K_{s}K_{s}K_{s}$ Signal Yield

$B^{0} \rightarrow K_{s}K_{s}K_{s}tCPV$ result

$B^{0} \rightarrow K_{s}K_{s}K_{s}$ Comparison

$C_{\rm CP} = -\mathcal{A}$	
BaBar	$-0.16\pm0.17\pm0.03$
Belle	$-0.31\pm0.20\pm0.07$
Average	-0.23 ± 0.13
sin $2\phi_1^{\text{eff}} =$	S = -S
BaBar	$0.90 \pm \begin{array}{c} 0.20 \\ 0.18 \end{array} \pm \begin{array}{c} 0.04 \\ 0.03 \end{array}$
Belle	$0.30 \pm 0.32 \pm 0.08$
Average	0.74 ± 0.17

 $B^{0} \rightarrow K_{S} \pi^{0}$

Dominated by b→sqq penguin decay

• CP even, regardless of any resonant structure [T. Gershon and M. Hazumi, PLB 596 163 (2004)]

SM expectation
$$S = -\sin 2\phi_1$$

 $\mathcal{A} = \mathbf{0}$

B⁰→K_sπ⁰π⁰ tCPV Result

K_sπ⁰π⁰ tCPV Comparison

$B^0 \rightarrow K^0 \pi^0$

 $\mathcal{A}(\mathbf{K}^0\pi^0)$

10 SEP 2008

- $A_{CP}(B^0 \rightarrow K^+ \pi^-) \neq A_{CP}(B^+ \rightarrow K^+ \pi^0)$
 - $\oplus \Delta A_{CP}$ puzzle Nature 452, 332-335(2008)
- Isospin sum rule among B→Kπ CP asymmetries M. Gronau, PLB 672(2005)82-88)

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) rac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})} rac{ au_{0}}{ au_{+}}$$

Nature
publicationGronau
Sum Rule
$$= A_{CP}(K^+\pi^0) \frac{2B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{B(K^0\pi^0)}{B(K^+\pi^-)}$$

 \Leftrightarrow Breaking sum rule indicates new physics
 \Leftrightarrow Theoretical uncertainty \sim SU(2) breaking
 $A(K^+\pi^-) - A(K^+\pi^0)$ Standard model \bullet Both S and A are important

$B^0 \rightarrow K_s \pi^0$ Signal Yield

10 SEP 2008

$B^{0} \rightarrow K_{L}\pi^{0}$ Signal Yield

 $B^0 \rightarrow K^0 \pi^0 tCPV$ result

RELLE

657 MBB Events / (2.5 ps) 50L • B^0 Tags ΔB^0 Tags 40 30 -2 -6 -4 0 2 6 ∆t (ps) Raw Asymmetry -0.4 -0.6 -4 -2 0 2 6 Δ t (ps)

 $A = +0.14 \pm 0.13 \pm 0.06$ $S = +0.67 \pm 0.31 \pm 0.08$

$B^0 \rightarrow K^0 \pi^0$ Comparison

$\sin 2\phi_1^{\text{eff}} =$	S
BaBar	$0.55 \pm 0.20 \pm 0.03$
Belle	$0.67 \pm 0.31 \pm 0.06$
Average	0.57 ± 0.17
$C_{CP} = -\mathcal{A}$	
BaBar	$0.13 \pm 0.13 \pm 0.03$
Belle	$-0.14 \pm 0.13 \pm 0.06$
Average	0.01 ± 0.10

Summary

10 SEP 2008

Summary

- Results from Babar and Belle
 - HFAG average shows no significant deviation from SM

$K_S K_S K_S$ -0.23 ± 0.13 0.74 ± 0.17 \leftarrow Theoretically clear $K_S \pi^0 \pi^0$ 0.18 ± 0.22 -0.52 ± 0.41 \leftarrow Anomaly? $K_0 \pi^0 \pi^0$ 0.01 ± 0.10 0.57 ± 0.17 \leftarrow Sum rule predicts		$C_{\rm CP} = -\mathcal{A}$	sin $2\phi_1^{eff}$]
$K_S \pi^0 \pi^0$ 0.18 ± 0.22 − 0.52 ± 0.41 ← Anomaly?	K _S K _S K _S	-0.23 ± 0.13	0.74 ± 0.17	← Theoretically clean
160-0 0.01 + 0.10 0.57 + 0.17 $-$ Sum rule predicte	$K_S π^0 π^0$	0.18 ± 0.22	-0.52 ± 0.41	← Anomaly?
\mathbb{R}° \mathbb{C}°	Κ ⁰ π ⁰	0.01 ± 0.10	0.57 ± 0.17	← Sum rule predicts

- Super B factory is necessary for these modes
- We need more statistics

Backup

Systematic Errors

	K _S K _S K _S		$K_s \pi^0 \pi^0$		$K^0\pi^0$	
	δS	δΑ	δS	δΑ	δS	δΑ
Vertexing	0.010	0.020	0.011	0.020	0.013	0.022
Flavor tagging	0.012	0.006	0.008	0.005	0.007	0.005
Resolution	0.049	0.016	0.066	0.010	0.063	0.007
Physics	0.001	0.001	0.007	0.001	0.007	0.001
Fit bias	0.024	0.013	0.009	0.004	0.010	0.020
BG fraction	0.057	0.049	0.009	0.001	0.029	0.022
BG dt shape	0.007	0.010	0.046	0.019	0.015	0.006
TSI	0.001	0.042	0.001	0.043	0.014	0.054
Total	0.081	0.071	0.082	0.053	0.06	80.0

KEKB & PEP-II

9 GeV e⁻ x 3.1 GeV e⁺ Head-on collision **PEP-II (USA)**

8 GeV e⁻ x 3.5 GeV e⁺ ±11mrad crossing **KEKB (Japan)** βγ=0.425

10 SEP 2008

βγ=0.56

Belle and BaBar Detectors

CsI(Tl) EM calorimeter

SC solenoid (1.5T)

TOF counter & Aerogel Cherenkov

Si Vertex detector

Drift Chamber (small cell)

DIRC