A High Statistics Study of the Decay $\tau \rightarrow \pi^{-}\pi^{0}\nu_{\tau}$

Outline

1.Introduction

2.Experiment -KEKB and Belle-

3.Analysis
Event selection
Mass spectrum
Muon anomalous magnetic moment
4.Summary

M. Fujikawa for the Belle Collaboration

Introduction

- The hadronic vacuum polarization term plays an important role in the theoretical calculation of the muon anomalous magnetic moment.
- The dominant part of the hadronic vacuum polarization term can be calculated from the 2π Spectral function measured with e⁺e⁻ or τ data.
- Recent data indicate that there is a systematic difference between the 2π system in e⁺e⁻ reaction and τ -decays, which needs to be understood. e^+

In this talk, results from Belle experiment are presented.

- One order of magnitude bigger than preceding experiments.

What should be measured

$$a_{\mu}^{\pi\pi} = \frac{\alpha(0)^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{K(s)}{s} v^{\pi\pi}(s) \quad \text{spectral function}$$

$$\begin{cases} \alpha : \text{fine structure constant} \\ s = M_{\pi\pi^{0}}^{2} \\ K(s) = x^{2} \left(1 - \frac{x^{2}}{2}\right) + (1 + x)^{2} \left(1 + \frac{1}{x^{2}}\right) \left(\ln(1 + x) - x - \frac{x^{2}}{2}\right) + \left(\frac{1 + x}{1 - x}\right) x^{2} \ln x \\ x = \frac{1 - \beta_{\mu}}{1 + \beta_{\mu}} , \quad \beta_{\mu} = \sqrt{1 - 4m_{\mu}^{2}/s} \end{cases}$$

$$v^{\pi\pi}(s) = \frac{m_{\tau^{2}}}{6\pi |V_{ud}|^{2} S_{EW}} \cdot \frac{B_{\pi\pi^{0}}}{B_{e}} \cdot \left[\left(1 - \frac{s}{m_{\tau^{2}}}\right)^{2} \left(1 + \frac{2s}{m_{\tau^{2}}}\right) \right]^{-1} \cdot \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds}$$

Branching Fraction
 Mass Spectrum

Experiment apparatus : Belle detector

Event Selection

$e^+e^- \rightarrow \tau^+ \tau^-$ Selection

 Low multiplicity: Number of charged tracks: 2 or 4, net charge=0
 Beam background rejection: Event Vertex Position

Physics background rejection:

- Use Missing Mass and Missing Angle information.(Bhabha,2photon)
- Dow track and gamma multiplicity. (qq continuum)

$\tau \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ Selection

- one charged track in the event hemisphere.
- one π^0 in the event hemisphere.
- No additional γ with Eγ≥200MeV
- Tag-side condition

Tag-side : 1 prong and no γ (\leftarrow reduce continuum B.G. at $m_{\pi\pi^0} \sim m_{\tau}$) charged track

 v_e

π^0 Signal

6

Signal region
$$5$$

 $6 < S_{\gamma\gamma} < 5$ rig

Sideband region
right:
$$^{-9} < S_{\gamma\gamma} < -7$$

left: $7 < S_{\gamma\gamma} < 9$

Sideband region is used to estimate the non- π^0 background

72.2/fb data at
$$\sqrt{s_{ee}} = 10.58$$
GeV
 $\tau \rightarrow \pi^{-} \pi^{0} v_{\tau}$
5.55 × 10⁶ event

 $m_{\pi\pi}^2$ distribution

Analysis procedure

B.G. subtracted $m_{\pi\pi}^2$ distribution

2bins are combined

• N($m_{\pi\pi}^2 > m_{\tau}^2$) = (2.3 ± 7.8) events

Acceptance

Data are Unfolded with the Singular Value Decomposition (SVD) method.

Radiative correction

Generator level distribution with MC

This effect is corrected in data

Line : Born level distribution

Plot : KKMC/Tauola

(w/ radiative correction)

Mass spectrum after Unfolding

Pion Form Factor $|F_{\pi}|^2$

Systematic in the mass distribution checked items

- Unfolding procedure
 - \oplus Checked with Signal MC (UNF(1))
 - \oplus Unfolding condition : value ± 5 (UNF(2))

Background (BKG)

- Main contribution is continuum
 - ¤ Continuum ±10%
 - Checked by Continuum Enhanced sample
- Acceptance (Accep.)
 - \oplus Pi0 efficiency ±3%
 - Gamma track isolation effect
 - Change Track cluster distance cut (default, tighter30cm)
- Momentum or energy scale (ENS) • Change $E_{\gamma} \pm 0.2\%$

Systematic of mass squared distribution

$M^2_{\pi\pi}$	1 st bin	threshold	ρ region	ρ' region	ρ" region
	0.08GeV ²	0.2-0.3GeV ²			
UNF(1)	0.0546	0.0069	0.0004	0.0232	0.0871
UNF2	0.0263	0.0019	0.0022	0.0037	0.1693
BKG	0.0113	0.0007	0.0002	0.0008	0.0488
Accep.	0.0536	0.0004	0.0032	0.0016	0.0005
ENS	0.0124	0.0036	0.0031	0.0408	0.0167
Total	0.082	0.008	0.005	0.005	0.197

A relative systematic (N – N_{ref})/ N_{ref} shown for each mass region

Fitting by BW formula

ρ(770), ρ'(1400), ρ''(1700)

$$F_{\pi}(s) = \frac{1}{1+\beta+\gamma} (BW_{\rho} + \beta BW_{\rho'} + \gamma BW_{\rho''})$$

$$BW_{\rho}^{G\&S} = \frac{M_{\rho}^2 + d(s)M_{\rho}\Gamma_{\rho}(s)}{(M_{\rho}^2 - s) + f(s) - i\sqrt{s}\Gamma_{\rho}(s)}$$

Gounaris-Sakurai(GS) parameterization

The normalization of the GS form is given by $|F_{\pi}(0)|^2 = 1$

Two kinds of fits applied:

- Fixed $\left| \mathbf{F}_{\pi}(0) \right|^2 = 1$
- Make $|F_{\pi}(0)|^2$ as a free parameter

fit parameter

\mathbf{M}_{ρ} , Γ_{ρ} :	ρ mass and width
$M_{_{ ho'}}$, $\Gamma_{_{ ho'}}$:	ρ^\prime mass and width
$M_{{}_{\rho''}}$, $\Gamma_{{}_{\rho''}}$:	$\rho^{\prime\prime}mass$ and width
β , φ_β	ρ'amplitude
γ, φ,	: ρ"amplitude

Fit result

fit parameter	all free	Norm fixed
Norm $\left \mathbf{F}_{\pi}(0) \right ^2$	1.06 ± 0.01	1.0 (fixed)
$M_{\rho} (MeV)$	774.2 ± 0.3	$773.5 \pm 0.2 \pm 0.7$
Γ_{ρ} (MeV)	149.4 ± 0.4	$149.2 \pm 0.4 \pm 0.8$
$M_{\rho'}$ (MeV)	1424 ± 12	$1453 \pm 7 \pm 29$
$\Gamma_{\rho'}$ (MeV)	479.9 ± 22.9	437.6±19.9±80
eta	0.136 ± 0.010	$0.167 \pm 0.005 \pm 0.046$
ϕ_{β} (deg <i>ree</i>)	175.7±7.1	$210.3 \pm 6.3 \pm 40$
$M_{\rho''} (MeV)$	1688 ± 16	$1730 \pm 22 \pm 113$
$\Gamma_{\rho''}$ (MeV)	244.3 ± 25.8	137.9±50.0±88
$ \gamma $	0.061 ± 0.009	$0.031 \pm 0.011 \pm 0.05$
ϕ_{γ} (deg ree)	-16.3 ± 7.6	44.2±17±117
χ^2 / d.o.f	80/51	91/52

Systematic of resonance parameters

* * * * * * * * * * * * * * * * * *			
	nanananananananananananananananananan	rahanananananananananananananananananana	rahanananananananananananananananananana

Source of	Μρ	Γρ	Μρ'	Γρ'	β	ϕ_{β}	Μρ"	Γρ"	γ	ϕ_{γ}
systematics	MeV)	(MeV)	(MeV)	(MeV)	(deg.)	(MeV)	(MeV)		(deg.)
Fit bias	0.5	0.4	27	71	0.037	4	103	**	**	**
unfold	0.3	0.3	3	26	0.02	0.1	11	7.2	0.002	6
B.G.	0.2		11	25	0.014	40	13	86	0.053	117
Acceptance		0.1	1	4		0.6	0.1	7		1
Momentum scale	0.3	0.6	2	1		2	45	15		1
total	0.7	0.8	29	80	0.046	40	113	88	0.05	117

"Fit bias" is checked by fitting the signal MC sample, where resonance parameter is known.

Comparison with ALEPH, CLEO

Agree with other exp. data.

Our result is more precise especially in high mass region.

Ratio of data/fit

Hadronic vacuum polarization a_{μ}

$$a_{\mu}^{had,LO} = \frac{\alpha^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \, \frac{K(s)}{s} \, v^{\pi\pi}(s)$$
$$v^{\pi\pi}(s) = \frac{m_{\tau^{2}}}{6\pi |V_{ud}|^{2} S_{EW}} \cdot \frac{B_{\pi\pi^{0}}}{B_{e}} \cdot \left[\left(1 - \frac{s}{m_{\tau^{2}}} \right)^{2} \left(1 + \frac{2s}{m_{\tau^{2}}} \right) \right]^{-1} \cdot \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds}$$

 $a_{\mu}(2\pi) = 461.6 \pm 0.5(\text{stat.}) \pm 1.0(\text{int.sys.}) \pm 3.0(\text{ext.sys}) \times 10^{-10}$

$$0.25 \text{GeV}^2 \le m_{\pi\pi}^2 \le m_{\tau}^2$$

 $a_{\mu}(2\pi)$ after SU(2) correction

Isospin breaking correction in this mass region.

(-1.8 ± 2.3)x10⁻¹⁰ $p-\omega$ interference effects $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ in the phase space Ref.Phys.Lett.B513,361(2001) $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ in the width

- $a_{\mu}(2\pi) = 459.8 \pm 0.5(\text{stat.}) \pm 3.2(\text{sys.}) \pm 2.3(\text{SU}(2))$ 0.25GeV² $\leq m_{\pi\pi}^2 \leq m_{\tau}^2 \leq m_{\tau}^2 \leq m_{\tau}^2$ ×10⁻¹⁰
 - Consistent with other τ data

c.f.
$$\tau$$
 (ALEPH, CLEO)
 $a_{\mu}(2\pi) = 464.0 \pm 3.2 \pm 2.3_{SU(2)}$
 $e^{+}e^{-}(CMD2 + KLOE)$
 $a_{\mu}(2\pi) = 450.2 \pm 4.9 \pm 1.6_{rad}$
Ref.
Eur.Pl

Ref. Eur.Phys.C27,497(2003)

Ref. Eur.Phys.C31,503(2003)

contribution from each mass region

$$a_{\mu}^{had,LO} = \frac{\alpha^2}{\pi} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} v^{\pi\pi}(s)$$

 $\times 10^{-10}$

$M^{2}_{\pi\pi}$ region	Belle	CLEO	ALEPH
(GeV ²)			
0.25-0.45	119.6 ± 0.4	123.6 ± 1.7	113.8 ± 3.5
0.45-0.75	302.7 ± 0.3	298.5 ± 1.4	296.7 ± 2.6
0.75-1.1	32.5 ± 0.1	29.1 ± 0.3	34.4 ± 0.7
1.1-1.7	6.1 ± 0.02	6.2 ± 0.1	6.9 ± 0.2
1.7-3.2	0.81 ± 0.01	0.72 ± 0.03	0.78 ± 0.05

Summary

- We measure $\pi^-\pi^0$ mass spectrum in the $\tau^- \rightarrow \pi^-\pi^0 v_{\tau}$ decay with 72.2/fb data collected with the Belle detector at KEKB.
- In addition to the ρ(770) and ρ'(1400), the production of the ρ"(1700) in τ decays is unambiguously observed and its parameters are determined.
- We evaluate the 2π contribution to the muon anomalous magnetic moment a_{μ} using mass spectrum.
- Our a_{μ} result agrees well with the preceding τ -based results.
- The difference between our τ result and e^+e^- results is 1.5 σ .

Backup slides

Pion Form Factor $|F_{\pi}|^2$

ALEPH

CLEO

Internal Systematic Error

source	$\Delta a_{\mu}^{\pi\pi}(unit:\times 10^{-10})$
Background estimation	
•non- τ (ee->hadron)	±0.11
• feed-down $h \ge 2\pi^0 v$	±0.09
• feed-down $K^-\pi^0 v$	±0.15
π^0/γ selection	
efficiency/shape cuts	±0.35
Energy scale	±0.10
Gamma veto	±0.93
γ/track overlap	0.24
Tagging Dependence	<0.1
Smearing/Migration effect	
Total	±1.04

 $m_{\pi\pi}^2 \ge 0.25 GeV^2$

Br pipiO result:

Experiment apparatus : KEKB Collider

KEKB Collider

- High Luminosity
- Asymmetric energy collider
 8GeV :e⁻ + 3.5GeV:e⁺
- √s = 10.58GeV (Y(4S))

 e⁺e⁻→Y(4S)→B B

Integrated Luminosity: ~ 630 fb⁻¹
 ~ 30fb⁻¹ => off-resonance

L>1.6x10³⁴cm⁻²s⁻¹ !!